- -

Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Esteve, Vicent es_ES
dc.contributor.author Berganzo, Javier es_ES
dc.contributor.author Monge, Rosa es_ES
dc.contributor.author Martínez-Bisbal, M.Carmen es_ES
dc.contributor.author Villa, Rosa es_ES
dc.contributor.author Celda, Bernardo es_ES
dc.contributor.author Fernández, Luis es_ES
dc.date.accessioned 2016-06-06T11:28:56Z
dc.date.available 2016-06-06T11:28:56Z
dc.date.issued 2014-11
dc.identifier.issn 1932-1058
dc.identifier.uri http://hdl.handle.net/10251/65306
dc.description.abstract A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients. (C) 2014 AIP Publishing LLC. es_ES
dc.description.sponsorship This work was supported partially by the Basque Government under the Etortek-Microsystems Programme, the ERANET-Neuron Project EPINet (EUI2009-04093) and SAF2009-14724-C02-02 from the Spanish Ministry of Science and Innovation and the European Regional Development Fund. The authors would like to thank Jorge Elizalde (Ikerlan S. Coop.) for their help and support and CIBER-BBN for general funding and support of the project. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Biomicrofluidics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject On-a-chip es_ES
dc.subject Gold nanoparticles es_ES
dc.subject NMR-SPECTROSCOPY es_ES
dc.subject Mammalian-Cells es_ES
dc.subject Single neurons es_ES
dc.subject MR Microscopy es_ES
dc.subject In-vivo es_ES
dc.subject Microstructure es_ES
dc.subject Platforms es_ES
dc.subject Perfusion es_ES
dc.title Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4902002
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//EUI2009-04093/ES/EPINET: UNDERSTANDING AND MANIPULATING EPILEPTIC NETWORKS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//SAF2009-14724-C02-02/ES/Desarrollo De Un Nuevo Metodo De Diagnostico No Invasivo De Patologias Corneales Por Bioimpedancia Utilizando Micronanoelectrodos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Esteve, V.; Berganzo, J.; Monge, R.; Martínez-Bisbal, M.; Villa, R.; Celda, B.; Fernández, L. (2014). Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. Biomicrofluidics. 8(6):064105-1-064105-11. https://doi.org/10.1063/1.4902002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4902002 es_ES
dc.description.upvformatpinicio 064105-1 es_ES
dc.description.upvformatpfin 064105-11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 276781 es_ES
dc.identifier.pmcid PMC4240776 en_EN
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Horská, A., & Barker, P. B. (2010). Imaging of Brain Tumors: MR Spectroscopy and Metabolic Imaging. Neuroimaging Clinics of North America, 20(3), 293-310. doi:10.1016/j.nic.2010.04.003 es_ES
dc.description.references Mountford, C., Lean, C., Malycha, P., & Russell, P. (2006). Proton spectroscopy provides accurate pathology on biopsy and in vivo. Journal of Magnetic Resonance Imaging, 24(3), 459-477. doi:10.1002/jmri.20668 es_ES
dc.description.references Esteve, V., Celda, B., & Martínez-Bisbal, M. C. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry, 403(9), 2611-2625. doi:10.1007/s00216-012-6001-z es_ES
dc.description.references Esteve, V., Martínez-Granados, B., & Martínez-Bisbal, M. C. (2014). Pitfalls to be considered on the metabolomic analysis of biological samples by HR-MAS. Frontiers in Chemistry, 2. doi:10.3389/fchem.2014.00033 es_ES
dc.description.references G. Jenkins and C. D. Mansfield ,Microfluidic Diagnostics Methods and Protocols, Methods in Molecular Biology, Methods and Protocols( Humana Press: Imprint Humana Press, Totowa, New Jersey, 2013), Chap. XIII, 525 p. es_ES
dc.description.references Bernardi, A., Jiménez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., … Imberty, A. (2013). Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev., 42(11), 4709-4727. doi:10.1039/c2cs35408j es_ES
dc.description.references Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 es_ES
dc.description.references Jiang, S., Win, K. Y., Liu, S., Teng, C. P., Zheng, Y., & Han, M.-Y. (2013). Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale, 5(8), 3127. doi:10.1039/c3nr34005h es_ES
dc.description.references Jung, S., Nam, J., Hwang, S., Park, J., Hur, J., Im, K., … Kim, S. (2013). Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy. Analytical Chemistry, 85(16), 7674-7681. doi:10.1021/ac401390m es_ES
dc.description.references Melancon, M. P., Lu, W., Zhong, M., Zhou, M., Liang, G., Elliott, A. M., … Jason Stafford, R. (2011). Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 32(30), 7600-7608. doi:10.1016/j.biomaterials.2011.06.039 es_ES
dc.description.references Murray, R. A., Qiu, Y., Chiodo, F., Marradi, M., Penadés, S., & Moya, S. E. (2014). A Quantitative Study of the Intracellular Dynamics of Fluorescently Labelled Glyco-Gold Nanoparticles via Fluorescence Correlation Spectroscopy. Small, 10(13), 2602-2610. doi:10.1002/smll.201303604 es_ES
dc.description.references Caravan, P., Ellison, J. J., McMurry, T. J., & Lauffer, R. B. (1999). Gadolinium(III) Chelates as MRI Contrast Agents:  Structure, Dynamics, and Applications. Chemical Reviews, 99(9), 2293-2352. doi:10.1021/cr980440x es_ES
dc.description.references Van de Stolpe, A., & den Toonder, J. (2013). Workshop meeting report Organs-on-Chips: human disease models. Lab on a Chip, 13(18), 3449. doi:10.1039/c3lc50248a es_ES
dc.description.references El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442(7101), 403-411. doi:10.1038/nature05063 es_ES
dc.description.references Kim, L., Vahey, M. D., Lee, H.-Y., & Voldman, J. (2006). Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab on a Chip, 6(3), 394. doi:10.1039/b511718f es_ES
dc.description.references Kim, L., Toh, Y.-C., Voldman, J., & Yu, H. (2007). A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 7(6), 681. doi:10.1039/b704602b es_ES
dc.description.references Tourovskaia, A., Figueroa-Masot, X., & Folch, A. (2005). Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies. Lab on a Chip, 5(1), 14. doi:10.1039/b405719h es_ES
dc.description.references Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181-189. doi:10.1038/nature13118 es_ES
dc.description.references Blackband, S. J., Buckley, D. L., Bui, J. D., & Phillips, M. I. (1999). NMR microscopy—beginnings and new directions. Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine, 9(3), 112-116. doi:10.1007/bf02594606 es_ES
dc.description.references KETTUNEN, M., & BRINDLE, K. (2005). Apoptosis detection using magnetic resonance imaging and spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 47(3-4), 175-185. doi:10.1016/j.pnmrs.2005.08.005 es_ES
dc.description.references Benveniste, H., & Blackband, S. J. (2006). Translational neuroscience and magnetic-resonance microscopy. The Lancet Neurology, 5(6), 536-544. doi:10.1016/s1474-4422(06)70472-0 es_ES
dc.description.references Ehrmann, K., Pataky, K., Stettler, M., Wurm, F. M., Brugger, J., Besse, P.-A., & Popovic, R. (2007). NMR spectroscopy and perfusion of mammalian cells using surface microprobes. Lab on a Chip, 7(3), 381. doi:10.1039/b613240e es_ES
dc.description.references Shepherd, T. M., Scheffler, B., King, M. A., Stanisz, G. J., Steindler, D. A., & Blackband, S. J. (2006). MR microscopy of rat hippocampal slice cultures: A novel model for studying cellular processes and chronic perturbations to tissue microstructure. NeuroImage, 30(3), 780-786. doi:10.1016/j.neuroimage.2005.10.020 es_ES
dc.description.references Grant, S. C., Aiken, N. R., Plant, H. D., Gibbs, S., Mareci, T. H., Webb, A. G., & Blackband, S. J. (2000). NMR spectroscopy of single neurons. Magnetic Resonance in Medicine, 44(1), 19-22. doi:10.1002/1522-2594(200007)44:1<19::aid-mrm4>3.0.co;2-f es_ES
dc.description.references Grant, S. C., Buckley, D. L., Gibbs, S., Webb, A. G., & Blackband, S. J. (2001). MR microscopy of multicomponent diffusion in single neurons. Magnetic Resonance in Medicine, 46(6), 1107-1112. doi:10.1002/mrm.1306 es_ES
dc.description.references Blanco, F. J., Agirregabiria, M., Garcia, J., Berganzo, J., Tijero, M., Arroyo, M. T., … Mayora, K. (2004). Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Journal of Micromechanics and Microengineering, 14(7), 1047-1056. doi:10.1088/0960-1317/14/7/027 es_ES
dc.description.references Duval, D., González-Guerrero, A. B., Dante, S., Osmond, J., Monge, R., Fernández, L. J., … Lechuga, L. M. (2012). Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab on a Chip, 12(11), 1987. doi:10.1039/c2lc40054e es_ES
dc.description.references Liu, J., Cai, B., Zhu, J., Ding, G., Zhao, X., Yang, C., & Chen, D. (2004). Process research of high aspect ratio microstructure using SU-8 resist. Microsystem Technologies, 10(4), 265-268. doi:10.1007/s00542-002-0242-2 es_ES
dc.description.references Altuna, A., Gabriel, G., Menéndez de la Prida, L., Tijero, M., Guimerá, A., Berganzo, J., … Fernández, L. J. (2010). SU-8-based microneedles forin vitroneural applications. Journal of Micromechanics and Microengineering, 20(6), 064014. doi:10.1088/0960-1317/20/6/064014 es_ES
dc.description.references Fernández, L. J., Altuna, A., Tijero, M., Gabriel, G., Villa, R., Rodríguez, M. J., … Blanco, F. J. (2009). Study of functional viability of SU-8-based microneedles for neural applications. Journal of Micromechanics and Microengineering, 19(2), 025007. doi:10.1088/0960-1317/19/2/025007 es_ES
dc.description.references Ni, M., Tong, W. H., Choudhury, D., Rahim, N. A. A., Iliescu, C., & Yu, H. (2009). Cell Culture on MEMS Platforms: A Review. International Journal of Molecular Sciences, 10(12), 5411-5441. doi:10.3390/ijms10125411 es_ES
dc.description.references Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., … Melzak, J. (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials, 23(13), 2737-2750. doi:10.1016/s0142-9612(02)00007-8 es_ES
dc.description.references Nemani, K. V., Moodie, K. L., Brennick, J. B., Su, A., & Gimi, B. (2013). In vitro and in vivo evaluation of SU-8 biocompatibility. Materials Science and Engineering: C, 33(7), 4453-4459. doi:10.1016/j.msec.2013.07.001 es_ES
dc.description.references Rigat-Brugarolas, L. G., Elizalde-Torrent, A., Bernabeu, M., De Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., … del Portillo, H. A. (2014). A functional microengineered model of the human splenon-on-a-chip. Lab Chip, 14(10), 1715-1724. doi:10.1039/c3lc51449h es_ES
dc.description.references Torrejon, K. Y., Pu, D., Bergkvist, M., Danias, J., Sharfstein, S. T., & Xie, Y. (2013). Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnology and Bioengineering, 110(12), 3205-3218. doi:10.1002/bit.24977 es_ES
dc.description.references Ahlenius, H., & Kokaia, Z. (2010). Isolation and Generation of Neurosphere Cultures from Embryonic and Adult Mouse Brain. Mouse Cell Culture, 241-252. doi:10.1007/978-1-59745-019-5_18 es_ES
dc.description.references Gil-Perotín, S., Duran-Moreno, M., Cebrián-Silla, A., Ramírez, M., García-Belda, P., & García-Verdugo, J. M. (2013). Adult Neural Stem Cells From the Subventricular Zone: A Review of the Neurosphere Assay. The Anatomical Record, 296(9), 1435-1452. doi:10.1002/ar.22746 es_ES
dc.description.references Martínez-Bisbal, M. C., Esteve, V., Martínez-Granados, B., & Celda, B. (2011). Magnetic Resonance Microscopy Contribution to Interpret High-Resolution Magic Angle Spinning Metabolomic Data of Human Tumor Tissue. Journal of Biomedicine and Biotechnology, 2011, 1-8. doi:10.1155/2011/763684 es_ES
dc.description.references Moroni, L., de Wijn, J. R., & van Blitterswijk, C. A. (2008). Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science, Polymer Edition, 19(5), 543-572. doi:10.1163/156856208784089571 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem