Mostrar el registro sencillo del ítem
dc.contributor.author | Esteve, Vicent![]() |
es_ES |
dc.contributor.author | Berganzo, Javier![]() |
es_ES |
dc.contributor.author | Monge, Rosa![]() |
es_ES |
dc.contributor.author | Martínez-Bisbal, M.Carmen![]() |
es_ES |
dc.contributor.author | Villa, Rosa![]() |
es_ES |
dc.contributor.author | Celda, Bernardo![]() |
es_ES |
dc.contributor.author | Fernández, Luis![]() |
es_ES |
dc.date.accessioned | 2016-06-06T11:28:56Z | |
dc.date.available | 2016-06-06T11:28:56Z | |
dc.date.issued | 2014-11 | |
dc.identifier.issn | 1932-1058 | |
dc.identifier.uri | http://hdl.handle.net/10251/65306 | |
dc.description.abstract | A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients. (C) 2014 AIP Publishing LLC. | es_ES |
dc.description.sponsorship | This work was supported partially by the Basque Government under the Etortek-Microsystems Programme, the ERANET-Neuron Project EPINet (EUI2009-04093) and SAF2009-14724-C02-02 from the Spanish Ministry of Science and Innovation and the European Regional Development Fund. The authors would like to thank Jorge Elizalde (Ikerlan S. Coop.) for their help and support and CIBER-BBN for general funding and support of the project. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Biomicrofluidics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | On-a-chip | es_ES |
dc.subject | Gold nanoparticles | es_ES |
dc.subject | NMR-SPECTROSCOPY | es_ES |
dc.subject | Mammalian-Cells | es_ES |
dc.subject | Single neurons | es_ES |
dc.subject | MR Microscopy | es_ES |
dc.subject | In-vivo | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Platforms | es_ES |
dc.subject | Perfusion | es_ES |
dc.title | Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4902002 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//EUI2009-04093/ES/EPINET: UNDERSTANDING AND MANIPULATING EPILEPTIC NETWORKS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//SAF2009-14724-C02-02/ES/Desarrollo De Un Nuevo Metodo De Diagnostico No Invasivo De Patologias Corneales Por Bioimpedancia Utilizando Micronanoelectrodos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.description.bibliographicCitation | Esteve, V.; Berganzo, J.; Monge, R.; Martínez-Bisbal, M.; Villa, R.; Celda, B.; Fernández, L. (2014). Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. Biomicrofluidics. 8(6):064105-1-064105-11. https://doi.org/10.1063/1.4902002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4902002 | es_ES |
dc.description.upvformatpinicio | 064105-1 | es_ES |
dc.description.upvformatpfin | 064105-11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 276781 | es_ES |
dc.identifier.pmcid | PMC4240776 | en_EN |
dc.contributor.funder | Gobierno Vasco/Eusko Jaurlaritza | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Horská, A., & Barker, P. B. (2010). Imaging of Brain Tumors: MR Spectroscopy and Metabolic Imaging. Neuroimaging Clinics of North America, 20(3), 293-310. doi:10.1016/j.nic.2010.04.003 | es_ES |
dc.description.references | Mountford, C., Lean, C., Malycha, P., & Russell, P. (2006). Proton spectroscopy provides accurate pathology on biopsy and in vivo. Journal of Magnetic Resonance Imaging, 24(3), 459-477. doi:10.1002/jmri.20668 | es_ES |
dc.description.references | Esteve, V., Celda, B., & Martínez-Bisbal, M. C. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry, 403(9), 2611-2625. doi:10.1007/s00216-012-6001-z | es_ES |
dc.description.references | Esteve, V., MartÃnez-Granados, B., & MartÃnez-Bisbal, M. C. (2014). Pitfalls to be considered on the metabolomic analysis of biological samples by HR-MAS. Frontiers in Chemistry, 2. doi:10.3389/fchem.2014.00033 | es_ES |
dc.description.references | G. Jenkins and C. D. Mansfield ,Microfluidic Diagnostics Methods and Protocols, Methods in Molecular Biology, Methods and Protocols( Humana Press: Imprint Humana Press, Totowa, New Jersey, 2013), Chap. XIII, 525 p. | es_ES |
dc.description.references | Bernardi, A., Jiménez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., … Imberty, A. (2013). Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev., 42(11), 4709-4727. doi:10.1039/c2cs35408j | es_ES |
dc.description.references | Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 | es_ES |
dc.description.references | Jiang, S., Win, K. Y., Liu, S., Teng, C. P., Zheng, Y., & Han, M.-Y. (2013). Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale, 5(8), 3127. doi:10.1039/c3nr34005h | es_ES |
dc.description.references | Jung, S., Nam, J., Hwang, S., Park, J., Hur, J., Im, K., … Kim, S. (2013). Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy. Analytical Chemistry, 85(16), 7674-7681. doi:10.1021/ac401390m | es_ES |
dc.description.references | Melancon, M. P., Lu, W., Zhong, M., Zhou, M., Liang, G., Elliott, A. M., … Jason Stafford, R. (2011). Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 32(30), 7600-7608. doi:10.1016/j.biomaterials.2011.06.039 | es_ES |
dc.description.references | Murray, R. A., Qiu, Y., Chiodo, F., Marradi, M., Penadés, S., & Moya, S. E. (2014). A Quantitative Study of the Intracellular Dynamics of Fluorescently Labelled Glyco-Gold Nanoparticles via Fluorescence Correlation Spectroscopy. Small, 10(13), 2602-2610. doi:10.1002/smll.201303604 | es_ES |
dc.description.references | Caravan, P., Ellison, J. J., McMurry, T. J., & Lauffer, R. B. (1999). Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chemical Reviews, 99(9), 2293-2352. doi:10.1021/cr980440x | es_ES |
dc.description.references | Van de Stolpe, A., & den Toonder, J. (2013). Workshop meeting report Organs-on-Chips: human disease models. Lab on a Chip, 13(18), 3449. doi:10.1039/c3lc50248a | es_ES |
dc.description.references | El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442(7101), 403-411. doi:10.1038/nature05063 | es_ES |
dc.description.references | Kim, L., Vahey, M. D., Lee, H.-Y., & Voldman, J. (2006). Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab on a Chip, 6(3), 394. doi:10.1039/b511718f | es_ES |
dc.description.references | Kim, L., Toh, Y.-C., Voldman, J., & Yu, H. (2007). A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 7(6), 681. doi:10.1039/b704602b | es_ES |
dc.description.references | Tourovskaia, A., Figueroa-Masot, X., & Folch, A. (2005). Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies. Lab on a Chip, 5(1), 14. doi:10.1039/b405719h | es_ES |
dc.description.references | Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181-189. doi:10.1038/nature13118 | es_ES |
dc.description.references | Blackband, S. J., Buckley, D. L., Bui, J. D., & Phillips, M. I. (1999). NMR microscopy—beginnings and new directions. Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine, 9(3), 112-116. doi:10.1007/bf02594606 | es_ES |
dc.description.references | KETTUNEN, M., & BRINDLE, K. (2005). Apoptosis detection using magnetic resonance imaging and spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 47(3-4), 175-185. doi:10.1016/j.pnmrs.2005.08.005 | es_ES |
dc.description.references | Benveniste, H., & Blackband, S. J. (2006). Translational neuroscience and magnetic-resonance microscopy. The Lancet Neurology, 5(6), 536-544. doi:10.1016/s1474-4422(06)70472-0 | es_ES |
dc.description.references | Ehrmann, K., Pataky, K., Stettler, M., Wurm, F. M., Brugger, J., Besse, P.-A., & Popovic, R. (2007). NMR spectroscopy and perfusion of mammalian cells using surface microprobes. Lab on a Chip, 7(3), 381. doi:10.1039/b613240e | es_ES |
dc.description.references | Shepherd, T. M., Scheffler, B., King, M. A., Stanisz, G. J., Steindler, D. A., & Blackband, S. J. (2006). MR microscopy of rat hippocampal slice cultures: A novel model for studying cellular processes and chronic perturbations to tissue microstructure. NeuroImage, 30(3), 780-786. doi:10.1016/j.neuroimage.2005.10.020 | es_ES |
dc.description.references | Grant, S. C., Aiken, N. R., Plant, H. D., Gibbs, S., Mareci, T. H., Webb, A. G., & Blackband, S. J. (2000). NMR spectroscopy of single neurons. Magnetic Resonance in Medicine, 44(1), 19-22. doi:10.1002/1522-2594(200007)44:1<19::aid-mrm4>3.0.co;2-f | es_ES |
dc.description.references | Grant, S. C., Buckley, D. L., Gibbs, S., Webb, A. G., & Blackband, S. J. (2001). MR microscopy of multicomponent diffusion in single neurons. Magnetic Resonance in Medicine, 46(6), 1107-1112. doi:10.1002/mrm.1306 | es_ES |
dc.description.references | Blanco, F. J., Agirregabiria, M., Garcia, J., Berganzo, J., Tijero, M., Arroyo, M. T., … Mayora, K. (2004). Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Journal of Micromechanics and Microengineering, 14(7), 1047-1056. doi:10.1088/0960-1317/14/7/027 | es_ES |
dc.description.references | Duval, D., González-Guerrero, A. B., Dante, S., Osmond, J., Monge, R., Fernández, L. J., … Lechuga, L. M. (2012). Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab on a Chip, 12(11), 1987. doi:10.1039/c2lc40054e | es_ES |
dc.description.references | Liu, J., Cai, B., Zhu, J., Ding, G., Zhao, X., Yang, C., & Chen, D. (2004). Process research of high aspect ratio microstructure using SU-8 resist. Microsystem Technologies, 10(4), 265-268. doi:10.1007/s00542-002-0242-2 | es_ES |
dc.description.references | Altuna, A., Gabriel, G., Menéndez de la Prida, L., Tijero, M., Guimerá, A., Berganzo, J., … Fernández, L. J. (2010). SU-8-based microneedles forin vitroneural applications. Journal of Micromechanics and Microengineering, 20(6), 064014. doi:10.1088/0960-1317/20/6/064014 | es_ES |
dc.description.references | Fernández, L. J., Altuna, A., Tijero, M., Gabriel, G., Villa, R., Rodríguez, M. J., … Blanco, F. J. (2009). Study of functional viability of SU-8-based microneedles for neural applications. Journal of Micromechanics and Microengineering, 19(2), 025007. doi:10.1088/0960-1317/19/2/025007 | es_ES |
dc.description.references | Ni, M., Tong, W. H., Choudhury, D., Rahim, N. A. A., Iliescu, C., & Yu, H. (2009). Cell Culture on MEMS Platforms: A Review. International Journal of Molecular Sciences, 10(12), 5411-5441. doi:10.3390/ijms10125411 | es_ES |
dc.description.references | Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., … Melzak, J. (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials, 23(13), 2737-2750. doi:10.1016/s0142-9612(02)00007-8 | es_ES |
dc.description.references | Nemani, K. V., Moodie, K. L., Brennick, J. B., Su, A., & Gimi, B. (2013). In vitro and in vivo evaluation of SU-8 biocompatibility. Materials Science and Engineering: C, 33(7), 4453-4459. doi:10.1016/j.msec.2013.07.001 | es_ES |
dc.description.references | Rigat-Brugarolas, L. G., Elizalde-Torrent, A., Bernabeu, M., De Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., … del Portillo, H. A. (2014). A functional microengineered model of the human splenon-on-a-chip. Lab Chip, 14(10), 1715-1724. doi:10.1039/c3lc51449h | es_ES |
dc.description.references | Torrejon, K. Y., Pu, D., Bergkvist, M., Danias, J., Sharfstein, S. T., & Xie, Y. (2013). Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnology and Bioengineering, 110(12), 3205-3218. doi:10.1002/bit.24977 | es_ES |
dc.description.references | Ahlenius, H., & Kokaia, Z. (2010). Isolation and Generation of Neurosphere Cultures from Embryonic and Adult Mouse Brain. Mouse Cell Culture, 241-252. doi:10.1007/978-1-59745-019-5_18 | es_ES |
dc.description.references | Gil-Perotín, S., Duran-Moreno, M., Cebrián-Silla, A., Ramírez, M., García-Belda, P., & García-Verdugo, J. M. (2013). Adult Neural Stem Cells From the Subventricular Zone: A Review of the Neurosphere Assay. The Anatomical Record, 296(9), 1435-1452. doi:10.1002/ar.22746 | es_ES |
dc.description.references | Martínez-Bisbal, M. C., Esteve, V., Martínez-Granados, B., & Celda, B. (2011). Magnetic Resonance Microscopy Contribution to Interpret High-Resolution Magic Angle Spinning Metabolomic Data of Human Tumor Tissue. Journal of Biomedicine and Biotechnology, 2011, 1-8. doi:10.1155/2011/763684 | es_ES |
dc.description.references | Moroni, L., de Wijn, J. R., & van Blitterswijk, C. A. (2008). Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science, Polymer Edition, 19(5), 543-572. doi:10.1163/156856208784089571 | es_ES |