- -

Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model

Show full item record

Torregrosa, AJ.; Olmeda González, PC.; Gil Megías, A.; Cornejo, O. (2015). Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 229(13):1830-1839. https://doi.org/10.1177/0954407015571674

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65590

Files in this item

Item Metadata

Title: Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model
Author: Torregrosa, A. J. Olmeda González, Pablo Cesar Gil Megías, Antonio Cornejo, Omar
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
The use of subcooled flow boiling is a convenient option for the thermal management of downsized engines, but proper control of the phenomenon requires the accurate prediction of heat transfer at the coolant side, for ...[+]
Subjects: Subcooled boiling , Two-fluid model , Engine cooling
Copyrigths: Reserva de todos los derechos
Source:
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. (issn: 0954-4070 ) (eissn: 2041-2991 )
DOI: 10.1177/0954407015571674
Publisher:
SAGE Publications (UK and US)
Publisher version: http://dx.doi.org/10.1177/0954407015571674
Project ID:
info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/
info:eu-repo/grantAgreement/SENACYT//797-7-2/
Thanks:
The equipment used in this work was partially supported by FEDER project funds 'Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte' ...[+]
Type: Artículo

References

Pang, H. H., & Brace, C. J. (2004). Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(11), 1209-1215. doi:10.1243/0954407042580110

Burke, R. D., Brace, C. J., Hawley, J. G., & Pegg, I. (2010). Review of the systems analysis of interactions between the thermal, lubricant, and combustion processes of diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(5), 681-704. doi:10.1243/09544070jauto1301

Steiner, H., Brenn, G., Ramstorfer, F., & Breitschadel, B. (2011). Increased Cooling Power with Nucleate Boiling Flow in Automotive Engine Applications. New Trends and Developments in Automotive System Engineering. doi:10.5772/13489 [+]
Pang, H. H., & Brace, C. J. (2004). Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(11), 1209-1215. doi:10.1243/0954407042580110

Burke, R. D., Brace, C. J., Hawley, J. G., & Pegg, I. (2010). Review of the systems analysis of interactions between the thermal, lubricant, and combustion processes of diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(5), 681-704. doi:10.1243/09544070jauto1301

Steiner, H., Brenn, G., Ramstorfer, F., & Breitschadel, B. (2011). Increased Cooling Power with Nucleate Boiling Flow in Automotive Engine Applications. New Trends and Developments in Automotive System Engineering. doi:10.5772/13489

Li, Z., Huang, R.-H., & Wang, Z.-W. (2011). Subcooled boiling heat transfer modelling for internal combustion engine applications. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(3), 301-311. doi:10.1177/0954407011417349

Hawley, J. G., Wilson, M., Campbell, N. A. F., Hammond, G. P., & Leathard, M. J. (2004). Predicting boiling heat transfer using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(5), 509-520. doi:10.1243/095440704774061165

Li, G., Fu, S., Liu, Y., Liu, Y., Bai, S., & Cheng, L. (2009). A homogeneous flow model for boiling heat transfer calculation based on single phase flow. Energy Conversion and Management, 50(7), 1862-1868. doi:10.1016/j.enconman.2008.12.029

Chen, J. C. (1966). Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Industrial & Engineering Chemistry Process Design and Development, 5(3), 322-329. doi:10.1021/i260019a023

Torregrosa, A. J., Broatch, A., Olmeda, P., & Cornejo, O. (2014). Experiments on subcooled flow boiling in I.C. engine-like conditions at low flow velocities. Experimental Thermal and Fluid Science, 52, 347-354. doi:10.1016/j.expthermflusci.2013.10.004

Robinson, K., Hawley, J. G., & Campbell, N. A. F. (2003). Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(10), 877-889. doi:10.1243/095440703769683289

Lee, H. S., & O’Neill, A. T. (2009). Forced convection and nucleate boiling on a small flat heater in a rectangular duct: Experiments with two working fluids, a 50–50 ethylene glycol—water mixture, and water. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(2), 203-219. doi:10.1243/09544070jauto1008

Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5

Hernandez-Perez, V., Abdulkadir, M., & Azzopardi, B. J. (2011). Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe. The Journal of Computational Multiphase Flows, 3(1), 13-26. doi:10.1260/1757-482x.3.1.13

Pioro, I. L., Rohsenow, W., & Doerffer, S. S. (2004). Nucleate pool-boiling heat transfer. II: assessment of prediction methods. International Journal of Heat and Mass Transfer, 47(23), 5045-5057. doi:10.1016/j.ijheatmasstransfer.2004.06.020

Saiz Jabardo, J. M. (2010). An Overview of Surface Roughness Effects on Nucleate Boiling Heat Transfer~!2009-10-31~!2010-01-01~!2010-04-16~! The Open Transport Phenomena Journal, 2(1), 24-34. doi:10.2174/1877729501002010024

Podowski, M. Z. (2012). TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER. Nuclear Engineering and Technology, 44(8), 889-896. doi:10.5516/net.02.2012.720

Lo, S., & Osman, J. (2012). CFD Modeling of Boiling Flow in PSBT 5×5 Bundle. Science and Technology of Nuclear Installations, 2012, 1-8. doi:10.1155/2012/795935

Del Valle, V. H., & Kenning, D. B. R. (1985). Subcooled flow boiling at high heat flux. International Journal of Heat and Mass Transfer, 28(10), 1907-1920. doi:10.1016/0017-9310(85)90213-3

Cole, R. (1960). A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal, 6(4), 533-538. doi:10.1002/aic.690060405

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record