- -

Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Olmeda González, Pablo Cesar es_ES
dc.contributor.author Gil Megías, Antonio es_ES
dc.contributor.author Cornejo, Omar es_ES
dc.date.accessioned 2016-06-09T11:15:52Z
dc.date.available 2016-06-09T11:15:52Z
dc.date.issued 2015-11
dc.identifier.issn 0954-4070
dc.identifier.uri http://hdl.handle.net/10251/65590
dc.description.abstract The use of subcooled flow boiling is a convenient option for the thermal management of downsized engines, but proper control of the phenomenon requires the accurate prediction of heat transfer at the coolant side, for which the use of computational fluid dynamics is a suitable alternative. While in most of the applications found to engine cooling a single-fluid equivalent method is used, in this paper the performance of a twofluid method is evaluated in engine-like conditions with special interest in the low velocity range. The results indicate that the description of the process at low velocities provided by the two-fluid method is better than that of a single-fluid model, while model calibration is simpler and more robust and the computational cost is substantially reduced. es_ES
dc.description.sponsorship The equipment used in this work was partially supported by FEDER project funds 'Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte' (grant number FEDER-ICTS-2012-06), framed in the operational program of the unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. This work was partially supported by Senacyt Panama (Omar Cornejo, grant 797-7-2) en_EN
dc.language Español es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Subcooled boiling es_ES
dc.subject Two-fluid model es_ES
dc.subject Engine cooling es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954407015571674
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SENACYT//797-7-2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Olmeda González, PC.; Gil Megías, A.; Cornejo, O. (2015). Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 229(13):1830-1839. https://doi.org/10.1177/0954407015571674 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/0954407015571674 es_ES
dc.description.upvformatpinicio 1830 es_ES
dc.description.upvformatpfin 1839 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 229 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 303825 es_ES
dc.identifier.eissn 2041-2991
dc.contributor.funder Secretaría Nacional de Ciencia, Tecnología e Innovación, Panamá es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Pang, H. H., & Brace, C. J. (2004). Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(11), 1209-1215. doi:10.1243/0954407042580110 es_ES
dc.description.references Burke, R. D., Brace, C. J., Hawley, J. G., & Pegg, I. (2010). Review of the systems analysis of interactions between the thermal, lubricant, and combustion processes of diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(5), 681-704. doi:10.1243/09544070jauto1301 es_ES
dc.description.references Steiner, H., Brenn, G., Ramstorfer, F., & Breitschadel, B. (2011). Increased Cooling Power with Nucleate Boiling Flow in Automotive Engine Applications. New Trends and Developments in Automotive System Engineering. doi:10.5772/13489 es_ES
dc.description.references Li, Z., Huang, R.-H., & Wang, Z.-W. (2011). Subcooled boiling heat transfer modelling for internal combustion engine applications. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(3), 301-311. doi:10.1177/0954407011417349 es_ES
dc.description.references Hawley, J. G., Wilson, M., Campbell, N. A. F., Hammond, G. P., & Leathard, M. J. (2004). Predicting boiling heat transfer using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(5), 509-520. doi:10.1243/095440704774061165 es_ES
dc.description.references Li, G., Fu, S., Liu, Y., Liu, Y., Bai, S., & Cheng, L. (2009). A homogeneous flow model for boiling heat transfer calculation based on single phase flow. Energy Conversion and Management, 50(7), 1862-1868. doi:10.1016/j.enconman.2008.12.029 es_ES
dc.description.references Chen, J. C. (1966). Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Industrial & Engineering Chemistry Process Design and Development, 5(3), 322-329. doi:10.1021/i260019a023 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Olmeda, P., & Cornejo, O. (2014). Experiments on subcooled flow boiling in I.C. engine-like conditions at low flow velocities. Experimental Thermal and Fluid Science, 52, 347-354. doi:10.1016/j.expthermflusci.2013.10.004 es_ES
dc.description.references Robinson, K., Hawley, J. G., & Campbell, N. A. F. (2003). Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(10), 877-889. doi:10.1243/095440703769683289 es_ES
dc.description.references Lee, H. S., & O’Neill, A. T. (2009). Forced convection and nucleate boiling on a small flat heater in a rectangular duct: Experiments with two working fluids, a 50–50 ethylene glycol—water mixture, and water. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(2), 203-219. doi:10.1243/09544070jauto1008 es_ES
dc.description.references Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5 es_ES
dc.description.references Hernandez-Perez, V., Abdulkadir, M., & Azzopardi, B. J. (2011). Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe. The Journal of Computational Multiphase Flows, 3(1), 13-26. doi:10.1260/1757-482x.3.1.13 es_ES
dc.description.references Pioro, I. L., Rohsenow, W., & Doerffer, S. S. (2004). Nucleate pool-boiling heat transfer. II: assessment of prediction methods. International Journal of Heat and Mass Transfer, 47(23), 5045-5057. doi:10.1016/j.ijheatmasstransfer.2004.06.020 es_ES
dc.description.references Saiz Jabardo, J. M. (2010). An Overview of Surface Roughness Effects on Nucleate Boiling Heat Transfer~!2009-10-31~!2010-01-01~!2010-04-16~! The Open Transport Phenomena Journal, 2(1), 24-34. doi:10.2174/1877729501002010024 es_ES
dc.description.references Podowski, M. Z. (2012). TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER. Nuclear Engineering and Technology, 44(8), 889-896. doi:10.5516/net.02.2012.720 es_ES
dc.description.references Lo, S., & Osman, J. (2012). CFD Modeling of Boiling Flow in PSBT 5×5 Bundle. Science and Technology of Nuclear Installations, 2012, 1-8. doi:10.1155/2012/795935 es_ES
dc.description.references Del Valle, V. H., & Kenning, D. B. R. (1985). Subcooled flow boiling at high heat flux. International Journal of Heat and Mass Transfer, 28(10), 1907-1920. doi:10.1016/0017-9310(85)90213-3 es_ES
dc.description.references Cole, R. (1960). A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal, 6(4), 533-538. doi:10.1002/aic.690060405 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem