Mostrar el registro sencillo del ítem
dc.contributor.author | Torregrosa, A. J. | es_ES |
dc.contributor.author | Olmeda González, Pablo Cesar | es_ES |
dc.contributor.author | Gil Megías, Antonio | es_ES |
dc.contributor.author | Cornejo, Omar | es_ES |
dc.date.accessioned | 2016-06-09T11:15:52Z | |
dc.date.available | 2016-06-09T11:15:52Z | |
dc.date.issued | 2015-11 | |
dc.identifier.issn | 0954-4070 | |
dc.identifier.uri | http://hdl.handle.net/10251/65590 | |
dc.description.abstract | The use of subcooled flow boiling is a convenient option for the thermal management of downsized engines, but proper control of the phenomenon requires the accurate prediction of heat transfer at the coolant side, for which the use of computational fluid dynamics is a suitable alternative. While in most of the applications found to engine cooling a single-fluid equivalent method is used, in this paper the performance of a twofluid method is evaluated in engine-like conditions with special interest in the low velocity range. The results indicate that the description of the process at low velocities provided by the two-fluid method is better than that of a single-fluid model, while model calibration is simpler and more robust and the computational cost is substantially reduced. | es_ES |
dc.description.sponsorship | The equipment used in this work was partially supported by FEDER project funds 'Dotacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte' (grant number FEDER-ICTS-2012-06), framed in the operational program of the unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. This work was partially supported by Senacyt Panama (Omar Cornejo, grant 797-7-2) | en_EN |
dc.language | Español | es_ES |
dc.publisher | SAGE Publications (UK and US) | es_ES |
dc.relation.ispartof | Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Subcooled boiling | es_ES |
dc.subject | Two-fluid model | es_ES |
dc.subject | Engine cooling | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0954407015571674 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SENACYT//797-7-2/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Torregrosa, AJ.; Olmeda González, PC.; Gil Megías, A.; Cornejo, O. (2015). Computational fluid dynamics assessment of subcooled flow boiling in internal-combustion engine-like conditions at low flow velocities with a volume-of-fluid model and a two-fluid model. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 229(13):1830-1839. https://doi.org/10.1177/0954407015571674 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1177/0954407015571674 | es_ES |
dc.description.upvformatpinicio | 1830 | es_ES |
dc.description.upvformatpfin | 1839 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 229 | es_ES |
dc.description.issue | 13 | es_ES |
dc.relation.senia | 303825 | es_ES |
dc.identifier.eissn | 2041-2991 | |
dc.contributor.funder | Secretaría Nacional de Ciencia, Tecnología e Innovación, Panamá | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Pang, H. H., & Brace, C. J. (2004). Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(11), 1209-1215. doi:10.1243/0954407042580110 | es_ES |
dc.description.references | Burke, R. D., Brace, C. J., Hawley, J. G., & Pegg, I. (2010). Review of the systems analysis of interactions between the thermal, lubricant, and combustion processes of diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 224(5), 681-704. doi:10.1243/09544070jauto1301 | es_ES |
dc.description.references | Steiner, H., Brenn, G., Ramstorfer, F., & Breitschadel, B. (2011). Increased Cooling Power with Nucleate Boiling Flow in Automotive Engine Applications. New Trends and Developments in Automotive System Engineering. doi:10.5772/13489 | es_ES |
dc.description.references | Li, Z., Huang, R.-H., & Wang, Z.-W. (2011). Subcooled boiling heat transfer modelling for internal combustion engine applications. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(3), 301-311. doi:10.1177/0954407011417349 | es_ES |
dc.description.references | Hawley, J. G., Wilson, M., Campbell, N. A. F., Hammond, G. P., & Leathard, M. J. (2004). Predicting boiling heat transfer using computational fluid dynamics. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(5), 509-520. doi:10.1243/095440704774061165 | es_ES |
dc.description.references | Li, G., Fu, S., Liu, Y., Liu, Y., Bai, S., & Cheng, L. (2009). A homogeneous flow model for boiling heat transfer calculation based on single phase flow. Energy Conversion and Management, 50(7), 1862-1868. doi:10.1016/j.enconman.2008.12.029 | es_ES |
dc.description.references | Chen, J. C. (1966). Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Industrial & Engineering Chemistry Process Design and Development, 5(3), 322-329. doi:10.1021/i260019a023 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Olmeda, P., & Cornejo, O. (2014). Experiments on subcooled flow boiling in I.C. engine-like conditions at low flow velocities. Experimental Thermal and Fluid Science, 52, 347-354. doi:10.1016/j.expthermflusci.2013.10.004 | es_ES |
dc.description.references | Robinson, K., Hawley, J. G., & Campbell, N. A. F. (2003). Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 217(10), 877-889. doi:10.1243/095440703769683289 | es_ES |
dc.description.references | Lee, H. S., & O’Neill, A. T. (2009). Forced convection and nucleate boiling on a small flat heater in a rectangular duct: Experiments with two working fluids, a 50–50 ethylene glycol—water mixture, and water. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(2), 203-219. doi:10.1243/09544070jauto1008 | es_ES |
dc.description.references | Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5 | es_ES |
dc.description.references | Hernandez-Perez, V., Abdulkadir, M., & Azzopardi, B. J. (2011). Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe. The Journal of Computational Multiphase Flows, 3(1), 13-26. doi:10.1260/1757-482x.3.1.13 | es_ES |
dc.description.references | Pioro, I. L., Rohsenow, W., & Doerffer, S. S. (2004). Nucleate pool-boiling heat transfer. II: assessment of prediction methods. International Journal of Heat and Mass Transfer, 47(23), 5045-5057. doi:10.1016/j.ijheatmasstransfer.2004.06.020 | es_ES |
dc.description.references | Saiz Jabardo, J. M. (2010). An Overview of Surface Roughness Effects on Nucleate Boiling Heat Transfer~!2009-10-31~!2010-01-01~!2010-04-16~! The Open Transport Phenomena Journal, 2(1), 24-34. doi:10.2174/1877729501002010024 | es_ES |
dc.description.references | Podowski, M. Z. (2012). TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER. Nuclear Engineering and Technology, 44(8), 889-896. doi:10.5516/net.02.2012.720 | es_ES |
dc.description.references | Lo, S., & Osman, J. (2012). CFD Modeling of Boiling Flow in PSBT 5×5 Bundle. Science and Technology of Nuclear Installations, 2012, 1-8. doi:10.1155/2012/795935 | es_ES |
dc.description.references | Del Valle, V. H., & Kenning, D. B. R. (1985). Subcooled flow boiling at high heat flux. International Journal of Heat and Mass Transfer, 28(10), 1907-1920. doi:10.1016/0017-9310(85)90213-3 | es_ES |
dc.description.references | Cole, R. (1960). A photographic study of pool boiling in the region of the critical heat flux. AIChE Journal, 6(4), 533-538. doi:10.1002/aic.690060405 | es_ES |