- -

Performance assessment of a closed-loop system for diabetes management.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Performance assessment of a closed-loop system for diabetes management.

Show full item record

Martínez Millana, A.; Fico, G.; Fernández Llatas, C.; Traver Salcedo, V. (2015). Performance assessment of a closed-loop system for diabetes management. Medical and Biological Engineering and Computing. 53(12):1295-1303. doi:10.1007/s11517-015-1245-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65700

Files in this item

Item Metadata

Title: Performance assessment of a closed-loop system for diabetes management.
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
Telemedicine systems can play an important role in the management of diabetes, a chronic condition that is increasing worldwide. Evaluations on the consistency of information across these systems and on their performance in ...[+]
Subjects: MHealth , SOA , Diabetes , Sensors , Telemonitoring , Performance , KPI
Copyrigths: Reserva de todos los derechos
Source:
Medical and Biological Engineering and Computing. (issn: 0140-0118 )
DOI: 10.1007/s11517-015-1245-3
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s11517-015-1245-3
Thanks:
The authors wish to acknowledge the consortium of the METABO project (funded by the European Commission, Grant nr. 216270) for their commitment during concept development and trial execution.
Type: Artículo

References

Bellazzi R, Larizza C, Montani A et al (2002) A telemedicine support dor diabetes management: the T-IDDM project. Comput Methods Programs Biomed 69:147–161

Boloor K, Chirkova R, Salo T, Viniotis Y (2011) Analysis of response time percentile service level agreements in soa-based applications. IEEE global telecommunications conference (GLOBECOM 2011), dec. 2011, pp 1–6

Cartwright M et al (2013) Effect of telehealth on quality of life and psychological outcomes over 12 months: nested study of patient reported outcomes in a pragmatic, cluster randomised controlled trial. BMJ 346:f653 [+]
Bellazzi R, Larizza C, Montani A et al (2002) A telemedicine support dor diabetes management: the T-IDDM project. Comput Methods Programs Biomed 69:147–161

Boloor K, Chirkova R, Salo T, Viniotis Y (2011) Analysis of response time percentile service level agreements in soa-based applications. IEEE global telecommunications conference (GLOBECOM 2011), dec. 2011, pp 1–6

Cartwright M et al (2013) Effect of telehealth on quality of life and psychological outcomes over 12 months: nested study of patient reported outcomes in a pragmatic, cluster randomised controlled trial. BMJ 346:f653

Chen I-Y et al (2008) Pervasive digital monitoring and transmission of pre-care patient biostatics with an OSGi, MOM and SOA based remote health care system. In: Proceedings of the 6th annual IEEE international conference on PerCom. Hong Kong

Fico G, Fioravanti A, Arredondo MT, Leuteritz JP, Guillén A, Fernandez D (2011) A user centered design approach for patient interfaces to a diabetes IT platform. Conf Proc IEEE Eng Med Biol Soc 2011:1169–1172

Fioravanti A, Fico G, Arredondo MT, Salvi D, Villalar JL (2010) Integration of heterogeneous biomedical sensors into an ISO/IEEE 11073 compliant application. In: Engineering in medicine and biology society (EMBC), 2010 Annual international conference of the IEEE, pp 1049–1052

García Saez G et al (2009) Architecture of a wireless personal assistant for telemedical diabetes care. Int J Med Inform 9(78):391–403

Gómez EJ, Hernando ME et al (2008) The INCA system: a further step towards a telemedical artificial pancreas. IEEE Trans Inf Technol Biomed 12(4):470–479

Harrison’s Principles of Internal Medicine (2011) McGraw-Hill. ISBN:978-0071748896. Ed. July 2011

Ke X, Li W et al (2010) WCDMA KPI framework definition methods and applications. ICCET proceedings V4-471–V4-475

Klonof D (2013) Twelve modern digital technologies that are transforming decision making for diabetes and all areas of health care. J Diabetes Sci Technol 7(2):291–295

Lanzola G et al (2007) Going mobile with a multiaccess service for the management of diabetic patients. J Diabetes Sci Technol 1(5):730–737

Ma C et al (2006) Empowering patients with essential information and communication support in the context of diabetes. Int J Med Inform 75(8):577–596

Müller AJ, Knuth M, Nikolaus KS, Krivánek R, Küster F, Hasslacher C (2013) First clinical evaluation of a new percutaneous optical fiber glucose sensor for continuous glucose monitoring in diabetes. J Diabetes Sci Technol 7:13

Nundy S et al (2012) Using mobile health to support chronic care model: developing an institutional model. Int J Telemed Appl 2012, Art Id 871925. doi: 10.1155/2012/871925

Obstfelder A, Engeseth KH, Wynn R (2007) Characteristic of succesfully implemented telemedical applications. Implement Sci 2:25

Pravin P et al (2012) A framework for the comparison of mobile patient monitoring systems. J Biomed Inf 45:544–556

Reichel A, Rietzsch H, Ludwig B, Röthig K, Moritz A, Bornstein S (2013) Self-adjustment of insulin dose using graphically depicted self-monitoring of blood glucose measurements in patients with type 1 diabetes mellitus. J Diabetes Sci Technol 7(1):156–162

Ryan D et al (2012) Clinical and cost effectiveness of mobile phone supported self-monitoring of asthma: multicenter randomized controlled trial. BMJ 344:e1756

Schade DS et al (2005) To pump or not to pump. Diabetes Technol Therapeutics 7:845–848

Stravroula G, Bartsocas CS et al (2010) SMARTDIAB: a communication and information technology approach for the intelligent monitoring, management and follow-up of type 1 diabetes patients. IEEE Trans Inf Technol Biomed 14(3):622–633

The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

Trief PM, Morin PC, Izquierdo R, Teresi JA, Eimicke JP, Goland R, Starren J, Shea S, Winstock RS (2006) Depression and glycaemic control in elderly etchnically diverse patients with diabetes: the IDEATel project. Diabetes Care 29(4):830–835

van der Weegentres S et al (2013) The development of a mobile monitoring and feedback tool to stimulate physical activity of people with a chronic disease in primary care: a user-centered design. JMIR 1(2):e8

Wakefield BJ et al (2014) Effect of home telemonitoring on glycemic and blood pressure control in primary care clinic patients with diabetes. Telemed e-Health 20(3):199–205. doi: 10.1089/tmj.2013.0151

Winkler S et al (2011) A new telemonitoring system intended for chronic heart failure patients using mobile technology—Feasibility Study. Int J Cardiol 153:55–58

Zhou YY, Kanter MH, Wang JJ, Garrido T (2010) Improved quality at kaiser permanente through e-mail between physicians and patients. Health Aff 29(7):1370–1375

[-]

This item appears in the following Collection(s)

Show full item record