Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Millana, Antonio | es_ES |
dc.contributor.author | Fico, G. | es_ES |
dc.contributor.author | Fernández Llatas, Carlos | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.date.accessioned | 2016-06-13T07:11:59Z | |
dc.date.available | 2016-06-13T07:11:59Z | |
dc.date.issued | 2015-12 | |
dc.identifier.issn | 0140-0118 | |
dc.identifier.uri | http://hdl.handle.net/10251/65700 | |
dc.description.abstract | Telemedicine systems can play an important role in the management of diabetes, a chronic condition that is increasing worldwide. Evaluations on the consistency of information across these systems and on their performance in a real situation are still missing. This paper presents a remote monitoring system for diabetes management based on physiological sensors, mobile technologies and patient/ doctor applications over a service-oriented architecture that has been evaluated in an international trial (83,905 operation records). The proposed system integrates three types of running environments and data engines in a single serviceoriented architecture. This feature is used to assess key performance indicators comparing them with other type of architectures. Data sustainability across the applications has been evaluated showing better outcomes for full integrated sensors. At the same time, runtime performance of clients has been assessed spotting no differences regarding the operative environment | es_ES |
dc.description.sponsorship | The authors wish to acknowledge the consortium of the METABO project (funded by the European Commission, Grant nr. 216270) for their commitment during concept development and trial execution. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Medical and Biological Engineering and Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MHealth | es_ES |
dc.subject | SOA | es_ES |
dc.subject | Diabetes | es_ES |
dc.subject | Sensors | es_ES |
dc.subject | Telemonitoring | es_ES |
dc.subject | Performance | es_ES |
dc.subject | KPI | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Performance assessment of a closed-loop system for diabetes management | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11517-015-1245-3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/216270/EU/Controlling Chronic Diseases related to Metabolic Disorders/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Martínez Millana, A.; Fico, G.; Fernández Llatas, C.; Traver Salcedo, V. (2015). Performance assessment of a closed-loop system for diabetes management. Medical and Biological Engineering and Computing. 53(12):1295-1303. doi:10.1007/s11517-015-1245-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11517-015-1245-3 | es_ES |
dc.description.upvformatpinicio | 1295 | es_ES |
dc.description.upvformatpfin | 1303 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 291455 | es_ES |
dc.description.references | Bellazzi R, Larizza C, Montani A et al (2002) A telemedicine support dor diabetes management: the T-IDDM project. Comput Methods Programs Biomed 69:147–161 | es_ES |
dc.description.references | Boloor K, Chirkova R, Salo T, Viniotis Y (2011) Analysis of response time percentile service level agreements in soa-based applications. IEEE global telecommunications conference (GLOBECOM 2011), dec. 2011, pp 1–6 | es_ES |
dc.description.references | Cartwright M et al (2013) Effect of telehealth on quality of life and psychological outcomes over 12 months: nested study of patient reported outcomes in a pragmatic, cluster randomised controlled trial. BMJ 346:f653 | es_ES |
dc.description.references | Chen I-Y et al (2008) Pervasive digital monitoring and transmission of pre-care patient biostatics with an OSGi, MOM and SOA based remote health care system. In: Proceedings of the 6th annual IEEE international conference on PerCom. Hong Kong | es_ES |
dc.description.references | Fico G, Fioravanti A, Arredondo MT, Leuteritz JP, Guillén A, Fernandez D (2011) A user centered design approach for patient interfaces to a diabetes IT platform. Conf Proc IEEE Eng Med Biol Soc 2011:1169–1172 | es_ES |
dc.description.references | Fioravanti A, Fico G, Arredondo MT, Salvi D, Villalar JL (2010) Integration of heterogeneous biomedical sensors into an ISO/IEEE 11073 compliant application. In: Engineering in medicine and biology society (EMBC), 2010 Annual international conference of the IEEE, pp 1049–1052 | es_ES |
dc.description.references | García Saez G et al (2009) Architecture of a wireless personal assistant for telemedical diabetes care. Int J Med Inform 9(78):391–403 | es_ES |
dc.description.references | Gómez EJ, Hernando ME et al (2008) The INCA system: a further step towards a telemedical artificial pancreas. IEEE Trans Inf Technol Biomed 12(4):470–479 | es_ES |
dc.description.references | Harrison’s Principles of Internal Medicine (2011) McGraw-Hill. ISBN:978-0071748896. Ed. July 2011 | es_ES |
dc.description.references | Ke X, Li W et al (2010) WCDMA KPI framework definition methods and applications. ICCET proceedings V4-471–V4-475 | es_ES |
dc.description.references | Klonof D (2013) Twelve modern digital technologies that are transforming decision making for diabetes and all areas of health care. J Diabetes Sci Technol 7(2):291–295 | es_ES |
dc.description.references | Lanzola G et al (2007) Going mobile with a multiaccess service for the management of diabetic patients. J Diabetes Sci Technol 1(5):730–737 | es_ES |
dc.description.references | Ma C et al (2006) Empowering patients with essential information and communication support in the context of diabetes. Int J Med Inform 75(8):577–596 | es_ES |
dc.description.references | Müller AJ, Knuth M, Nikolaus KS, Krivánek R, Küster F, Hasslacher C (2013) First clinical evaluation of a new percutaneous optical fiber glucose sensor for continuous glucose monitoring in diabetes. J Diabetes Sci Technol 7:13 | es_ES |
dc.description.references | Nundy S et al (2012) Using mobile health to support chronic care model: developing an institutional model. Int J Telemed Appl 2012, Art Id 871925. doi: 10.1155/2012/871925 | es_ES |
dc.description.references | Obstfelder A, Engeseth KH, Wynn R (2007) Characteristic of succesfully implemented telemedical applications. Implement Sci 2:25 | es_ES |
dc.description.references | Pravin P et al (2012) A framework for the comparison of mobile patient monitoring systems. J Biomed Inf 45:544–556 | es_ES |
dc.description.references | Reichel A, Rietzsch H, Ludwig B, Röthig K, Moritz A, Bornstein S (2013) Self-adjustment of insulin dose using graphically depicted self-monitoring of blood glucose measurements in patients with type 1 diabetes mellitus. J Diabetes Sci Technol 7(1):156–162 | es_ES |
dc.description.references | Ryan D et al (2012) Clinical and cost effectiveness of mobile phone supported self-monitoring of asthma: multicenter randomized controlled trial. BMJ 344:e1756 | es_ES |
dc.description.references | Schade DS et al (2005) To pump or not to pump. Diabetes Technol Therapeutics 7:845–848 | es_ES |
dc.description.references | Stravroula G, Bartsocas CS et al (2010) SMARTDIAB: a communication and information technology approach for the intelligent monitoring, management and follow-up of type 1 diabetes patients. IEEE Trans Inf Technol Biomed 14(3):622–633 | es_ES |
dc.description.references | The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986 | es_ES |
dc.description.references | Trief PM, Morin PC, Izquierdo R, Teresi JA, Eimicke JP, Goland R, Starren J, Shea S, Winstock RS (2006) Depression and glycaemic control in elderly etchnically diverse patients with diabetes: the IDEATel project. Diabetes Care 29(4):830–835 | es_ES |
dc.description.references | van der Weegentres S et al (2013) The development of a mobile monitoring and feedback tool to stimulate physical activity of people with a chronic disease in primary care: a user-centered design. JMIR 1(2):e8 | es_ES |
dc.description.references | Wakefield BJ et al (2014) Effect of home telemonitoring on glycemic and blood pressure control in primary care clinic patients with diabetes. Telemed e-Health 20(3):199–205. doi: 10.1089/tmj.2013.0151 | es_ES |
dc.description.references | Winkler S et al (2011) A new telemonitoring system intended for chronic heart failure patients using mobile technology—Feasibility Study. Int J Cardiol 153:55–58 | es_ES |
dc.description.references | Zhou YY, Kanter MH, Wang JJ, Garrido T (2010) Improved quality at kaiser permanente through e-mail between physicians and patients. Health Aff 29(7):1370–1375 | es_ES |