- -

Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts

Show full item record

San Emeterio Prieto, JL.; Rodríguez-Hernández, MA. (2015). Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts. Journal of Nondestructive Evaluation. 34(1):1-8. doi:10.1007/s10921-014-0270-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65710

Files in this item

Item Metadata

Title: Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
Wavelets are a powerful tool for signal and image denoising. Most of the denoising applications in different fields were based on the thresholding of the discrete wavelet transform (DWT) coefficients. Nevertheless, DWT ...[+]
Subjects: Wavelets , Denoising , Ultrasonic , Cycle spinning , Stationary , Wavelet transform
Copyrigths: Reserva de todos los derechos
Source:
Journal of Nondestructive Evaluation. (issn: 0195-9298 )
DOI: 10.1007/s10921-014-0270-8
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10921-014-0270-8
Thanks:
This work was partially supported by Spanish MCI Project DPI2011-22438
Type: Artículo

References

Galloway, R.L., McDermott, B.A., Thurstone, F.L.: A frequency diversity process for speckle reduction in real-time ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 45–49 (1988)

Newhouse, V.L., Bilgutay, N.M., Saniie, J., Furgason, E.S.: Flaw-to-grain echo enhancement by split spectrum processing. Ultrasonics 20, 59–68 (1982)

Karpur, P., Canelones, O.J.: Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals. Ultrasonics 30, 351–357 (1992) [+]
Galloway, R.L., McDermott, B.A., Thurstone, F.L.: A frequency diversity process for speckle reduction in real-time ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 45–49 (1988)

Newhouse, V.L., Bilgutay, N.M., Saniie, J., Furgason, E.S.: Flaw-to-grain echo enhancement by split spectrum processing. Ultrasonics 20, 59–68 (1982)

Karpur, P., Canelones, O.J.: Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals. Ultrasonics 30, 351–357 (1992)

Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptotia? J. R Stat. Soc. Ser. B 57, 301–369 (1995)

Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)

Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R Stat. Soc. 59, 319–351 (1997)

Jansen, M.: Noise Reduction by Wavelet Thresholding. Lecture Notes in Statistics 161. Springer, New York (2001). doi: 10.1007/978-1-4613-0145-5

Nason, G.P., Silverman, B.W.:The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, Vol. 103, pp 281–299. Springer, New York (1995)

Lang, M., Guo, H., Odegard, J.E., Burrus, C.S.: Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Proc. Lett. 3, 10–12 (1996)

Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103, pp 125–150, Springer, New York (1995) .

Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997)

Lázaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002)

Matz, V., Smid, R., Starman, S., Kreidl, M.: Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing. Ultrasonics 49, 752–759 (2009)

Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011)

Shi, G.M., Chen, X.Y., Song, X.X., Qui, F., Ding, A.L.: Signal matching wavelet for ultrasonic flaw detection in high background noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 776–787 (2011)

Song, S.P., Que, P.W.: Wavelet based noise suppression technique and its application to ultrasonic flaw detection. Ultrasonics 44, 188–193 (2006)

Rodriguez, M.A., San Emeterio, J.L., Lázaro, J.C., Ramos, A.: Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and Wigner-Ville transform processing. Ultrasonics 42, 847–851 (2004)

Zhang, G.M., Zhang, S.Y., Wang, Y.W.: Application of adaptive time-frequency decomposition in ultrasonic NDE of highly-scattering materials. Ultrasonics 38, 961–964 (2000)

Drai, R., Khelil, M., Benchaala, A.: Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT & E Int. 35, 567–572 (2002)

Pardo, E., San Emeterio, J.L.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006)

Kechida, A., Drai, R., Guessoum, A.: Texture analysis for flaw detection in ultrasonic images. J. Nondestruct. Eval. 31, 108–116 (2012). doi: 10.1007/s10921-011-0126-4

Rucka, M., Wilde, K.: Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J. Nondestruct. Eval. 32, 372–383 (2013). doi: 10.1007/s10921-013-0191-y

Hosseini, S.M.H., Duczek, S., Gabbert, U.: Damage localization in plates using mode conversion characteristics of ultrasonic guided waves. J. Nondestruct. Eval. 33, 152–165 (2014). doi: 10.1007/s10921-013-0211-y

Mohammed, M.S., Ki-Seong, K.: Shift-invariant wavelet packet for signal de-noising in ultrasonic testing. Insight 54, 366–370 (2012)

San Emeterio, J.L., Rodriguez-Hernandez, M.A.: Wavelet denoising of ultrasonic A-scans by random partial cycle spinning. In: Proceedings of the 2012 IEEE International Ultrasonics Symposium. pp 455–458.

Mallat, S.G.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

Shensa, M.J.: The discrete wavelet transform: wedding the à trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992). doi: 10.1109/78.157290

Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)

Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

Romijn, R.L., Thijssen, J.M., Vanbeuningen, G.W.J.: Estimation of scatterer size from backscattered ultrasound: a simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 593–606 (1989)

Gustafsson, M.G., Stepinski, T.: Studies of split spectrum processing, optimal detection, and maximum likehood amplitude estimation using a simple clutter model. Ultrasonics 35, 31–53 (1997)

[-]

This item appears in the following Collection(s)

Show full item record