- -

Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author San Emeterio Prieto, José Luis es_ES
dc.contributor.author Rodríguez-Hernández, Miguel A. es_ES
dc.date.accessioned 2016-06-13T08:15:29Z
dc.date.available 2016-06-13T08:15:29Z
dc.date.issued 2015-03
dc.identifier.issn 0195-9298
dc.identifier.uri http://hdl.handle.net/10251/65710
dc.description.abstract Wavelets are a powerful tool for signal and image denoising. Most of the denoising applications in different fields were based on the thresholding of the discrete wavelet transform (DWT) coefficients. Nevertheless, DWT transform is not a time or shift invariant transform and results depend on the selected shift. Improvements on the denoising performance can be obtained using the stationary wavelet transform (SWT) (also called shift-invariant or undecimated wavelet transform). Denoising using SWT has previously shown a robust and usually better performance than denoising using DWT but with a higher computational cost. In this paper, wavelet shrinkage schemes are applied for reducing noise in synthetic and experimental non-destructive evaluation ultrasonic A-scans, using DWT and a cycle-spinning implementation of SWT. A new denoising procedure, which we call random partial cycle spinning (RPCS), is presented. It is based on a cycle-spinning over a limited number of shifts that are selected in a random way. Wavelet denoising based on DWT, SWT and RPCS have been applied to the same sets of ultrasonic A-scans and their performances in terms of SNR are compared. In all cases three well known threshold selection rules (Universal, Minimax and Sure), with decomposition level dependent selection, have been used. It is shown that the new procedure provides a good robust denoising performance, without the DWT fluctuating performance, and close to SWT but with a much lower computational cost. es_ES
dc.description.sponsorship This work was partially supported by Spanish MCI Project DPI2011-22438 en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Nondestructive Evaluation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wavelets es_ES
dc.subject Denoising es_ES
dc.subject Ultrasonic es_ES
dc.subject Cycle spinning es_ES
dc.subject Stationary es_ES
dc.subject Wavelet transform es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10921-014-0270-8
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-22438/ES/NUEVAS TECNICAS ULTRASONICAS PARA ESTIMACION NO-INVASIVA. APLICACIONES INNOVADORAS EN TEJIDOS, VEGETALES, MATERIALES MICRO%2FNANOESTRUCTURADOS Y ELEMENTOS ESTRATEGICOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation San Emeterio Prieto, JL.; Rodríguez-Hernández, MA. (2015). Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts. Journal of Nondestructive Evaluation. 34(1):1-8. https://doi.org/10.1007/s10921-014-0270-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10921-014-0270-8 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 290915 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Galloway, R.L., McDermott, B.A., Thurstone, F.L.: A frequency diversity process for speckle reduction in real-time ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 45–49 (1988) es_ES
dc.description.references Newhouse, V.L., Bilgutay, N.M., Saniie, J., Furgason, E.S.: Flaw-to-grain echo enhancement by split spectrum processing. Ultrasonics 20, 59–68 (1982) es_ES
dc.description.references Karpur, P., Canelones, O.J.: Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals. Ultrasonics 30, 351–357 (1992) es_ES
dc.description.references Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994) es_ES
dc.description.references Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptotia? J. R Stat. Soc. Ser. B 57, 301–369 (1995) es_ES
dc.description.references Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995) es_ES
dc.description.references Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R Stat. Soc. 59, 319–351 (1997) es_ES
dc.description.references Jansen, M.: Noise Reduction by Wavelet Thresholding. Lecture Notes in Statistics 161. Springer, New York (2001). doi: 10.1007/978-1-4613-0145-5 es_ES
dc.description.references Nason, G.P., Silverman, B.W.:The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, Vol. 103, pp 281–299. Springer, New York (1995) es_ES
dc.description.references Lang, M., Guo, H., Odegard, J.E., Burrus, C.S.: Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Proc. Lett. 3, 10–12 (1996) es_ES
dc.description.references Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103, pp 125–150, Springer, New York (1995) . es_ES
dc.description.references Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997) es_ES
dc.description.references Lázaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002) es_ES
dc.description.references Matz, V., Smid, R., Starman, S., Kreidl, M.: Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing. Ultrasonics 49, 752–759 (2009) es_ES
dc.description.references Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011) es_ES
dc.description.references Shi, G.M., Chen, X.Y., Song, X.X., Qui, F., Ding, A.L.: Signal matching wavelet for ultrasonic flaw detection in high background noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 776–787 (2011) es_ES
dc.description.references Song, S.P., Que, P.W.: Wavelet based noise suppression technique and its application to ultrasonic flaw detection. Ultrasonics 44, 188–193 (2006) es_ES
dc.description.references Rodriguez, M.A., San Emeterio, J.L., Lázaro, J.C., Ramos, A.: Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and Wigner-Ville transform processing. Ultrasonics 42, 847–851 (2004) es_ES
dc.description.references Zhang, G.M., Zhang, S.Y., Wang, Y.W.: Application of adaptive time-frequency decomposition in ultrasonic NDE of highly-scattering materials. Ultrasonics 38, 961–964 (2000) es_ES
dc.description.references Drai, R., Khelil, M., Benchaala, A.: Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT & E Int. 35, 567–572 (2002) es_ES
dc.description.references Pardo, E., San Emeterio, J.L.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006) es_ES
dc.description.references Kechida, A., Drai, R., Guessoum, A.: Texture analysis for flaw detection in ultrasonic images. J. Nondestruct. Eval. 31, 108–116 (2012). doi: 10.1007/s10921-011-0126-4 es_ES
dc.description.references Rucka, M., Wilde, K.: Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J. Nondestruct. Eval. 32, 372–383 (2013). doi: 10.1007/s10921-013-0191-y es_ES
dc.description.references Hosseini, S.M.H., Duczek, S., Gabbert, U.: Damage localization in plates using mode conversion characteristics of ultrasonic guided waves. J. Nondestruct. Eval. 33, 152–165 (2014). doi: 10.1007/s10921-013-0211-y es_ES
dc.description.references Mohammed, M.S., Ki-Seong, K.: Shift-invariant wavelet packet for signal de-noising in ultrasonic testing. Insight 54, 366–370 (2012) es_ES
dc.description.references San Emeterio, J.L., Rodriguez-Hernandez, M.A.: Wavelet denoising of ultrasonic A-scans by random partial cycle spinning. In: Proceedings of the 2012 IEEE International Ultrasonics Symposium. pp 455–458. es_ES
dc.description.references Mallat, S.G.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989) es_ES
dc.description.references Shensa, M.J.: The discrete wavelet transform: wedding the à trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992). doi: 10.1109/78.157290 es_ES
dc.description.references Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991) es_ES
dc.description.references Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) es_ES
dc.description.references Romijn, R.L., Thijssen, J.M., Vanbeuningen, G.W.J.: Estimation of scatterer size from backscattered ultrasound: a simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 593–606 (1989) es_ES
dc.description.references Gustafsson, M.G., Stepinski, T.: Studies of split spectrum processing, optimal detection, and maximum likehood amplitude estimation using a simple clutter model. Ultrasonics 35, 31–53 (1997) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem