- -

Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing

Show full item record

Rius Mercado, M.; Bolea Boluda, M.; Mora Almerich, J.; Ortega Tamarit, B.; Capmany Francoy, J. (2015). Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing. Optics Express. 23(10):13634-13640. doi:10.1364/OE.23.013634

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65723

Files in this item

Item Metadata

Title: Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing
Author: Rius Mercado, Manuel Bolea Boluda, Mario Mora Almerich, José Ortega Tamarit, Beatriz Capmany Francoy, José
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Issued date:
Abstract:
We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been ...[+]
Subjects: Chirped pulses , Microwave photonics , Incoherent processing
Copyrigths: Reserva de todos los derechos
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.23.013634
Publisher:
Optical Society of America: Open Access Journals
Publisher version: http://dx.doi.org/10.1364/OE.23.013634
Description: “© 2015 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"
Thanks:
The research leading to these results has received funding from the national project TEC2011-26642 ( NEWTON) funded by the Ministerio de Ciencia y Tecnologia and the regional project GVA PROMETEOII2013/012.
Type: Artículo

References

Yao, J. (2010). Arbitrary waveform generation. Nature Photonics, 4(2), 79-80. doi:10.1038/nphoton.2009.276

Li, M., Azaña, J., Zhu, N., & Yao, J. (2014). Recent progresses on optical arbitrary waveform generation. Frontiers of Optoelectronics, 7(3), 359-375. doi:10.1007/s12200-014-0470-y

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 [+]
Yao, J. (2010). Arbitrary waveform generation. Nature Photonics, 4(2), 79-80. doi:10.1038/nphoton.2009.276

Li, M., Azaña, J., Zhu, N., & Yao, J. (2014). Recent progresses on optical arbitrary waveform generation. Frontiers of Optoelectronics, 7(3), 359-375. doi:10.1007/s12200-014-0470-y

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Wang, J., Shen, H., Fan, L., Wu, R., Niu, B., Varghese, L. T., … Qi, M. (2015). Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nature Communications, 6(1). doi:10.1038/ncomms6957

Maleki, L. (2011). The optoelectronic oscillator. Nature Photonics, 5(12), 728-730. doi:10.1038/nphoton.2011.293

Matsko, A. B., Maleki, L., Savchenkov, A. A., & Ilchenko, V. S. (2003). Whispering gallery mode based optoelectronic microwave oscillator. Journal of Modern Optics, 50(15-17), 2523-2542. doi:10.1080/09500340308233582

Bolea, M., Mora, J., Ortega, B., & Capmany, J. (2010). Photonic arbitrary waveform generation applicable to multiband UWB communications. Optics Express, 18(25), 26259. doi:10.1364/oe.18.026259

Zhang, M.-J., Liu, T.-G., Wang, A.-B., Zheng, J.-Y., Meng, L.-N., Zhang, Z.-X., & Wang, Y.-C. (2011). Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Optics Letters, 36(6), 1008. doi:10.1364/ol.36.001008

Bertero, M., Miyakawa, M., Boccacci, P., Conte, F., Orikasa, K., & Furutani, M. (2000). Image restoration in chirp-pulse microwave CT (CP-MCT). IEEE Transactions on Biomedical Engineering, 47(5), 690-699. doi:10.1109/10.841341

Li, M., Wang, C., Li, W., & Yao, J. (2010). An Unbalanced Temporal Pulse-Shaping System for Chirped Microwave Waveform Generation. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2968-2975. doi:10.1109/tmtt.2010.2079070

Hao Chi, & Jianping Yao. (2008). Chirped RF Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Nonlinearly Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 26(10), 1282-1287. doi:10.1109/jlt.2008.917768

Wang, C., & Yao, J. (2008). Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 56(2), 542-553. doi:10.1109/tmtt.2007.914639

Chi, H., & Yao, J. (2007). All-Fiber Chirped Microwave Pulses Generation Based on Spectral Shaping and Wavelength-to-Time Conversion. IEEE Transactions on Microwave Theory and Techniques, 55(9), 1958-1963. doi:10.1109/tmtt.2007.904084

Chao Wang, & Jianping Yao. (2010). Large Time-Bandwidth Product Microwave Arbitrary Waveform Generation Using a Spatially Discrete Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 28(11), 1652-1660. doi:10.1109/jlt.2010.2047093

Chao Wang, & Jianping Yao. (2009). Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 27(16), 3336-3341. doi:10.1109/jlt.2008.2010561

Li, M., & Yao, J. (2011). Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3531-3537. doi:10.1109/tmtt.2011.2169078

Bolea, M., Mora, J., Ortega, B., & Capmany, J. (2012). Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability. Optics Express, 20(6), 6728. doi:10.1364/oe.20.006728

Dorrer, C. (2009). Statistical analysis of incoherent pulse shaping. Optics Express, 17(5), 3341. doi:10.1364/oe.17.003341

Park, Y., & Azaña, J. (2010). Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing. Optics Express, 18(14), 14752. doi:10.1364/oe.18.014752

[-]

This item appears in the following Collection(s)

Show full item record