- -

Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rius Mercado, Manuel es_ES
dc.contributor.author Bolea Boluda, Mario es_ES
dc.contributor.author Mora Almerich, José es_ES
dc.contributor.author Ortega Tamarit, Beatriz es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2016-06-13T09:22:33Z
dc.date.available 2016-06-13T09:22:33Z
dc.date.issued 2015-05-18
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/65723
dc.description “© 2015 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" es_ES
dc.description.abstract We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing. es_ES
dc.description.sponsorship The research leading to these results has received funding from the national project TEC2011-26642 ( NEWTON) funded by the Ministerio de Ciencia y Tecnologia and the regional project GVA PROMETEOII2013/012. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America: Open Access Journals es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chirped pulses es_ES
dc.subject Microwave photonics es_ES
dc.subject Incoherent processing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.23.013634
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-26642/ES/NUEVA GENERACION DE TECNICAS OPTICAS DE TRANSMISION OFDM PARA FUTURAS REDES WDM-PONS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Rius Mercado, M.; Bolea Boluda, M.; Mora Almerich, J.; Ortega Tamarit, B.; Capmany Francoy, J. (2015). Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing. Optics Express. 23(10):13634-13640. https://doi.org/10.1364/OE.23.013634 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.23.013634 es_ES
dc.description.upvformatpinicio 13634 es_ES
dc.description.upvformatpfin 13640 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 292842 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Yao, J. (2010). Arbitrary waveform generation. Nature Photonics, 4(2), 79-80. doi:10.1038/nphoton.2009.276 es_ES
dc.description.references Li, M., Azaña, J., Zhu, N., & Yao, J. (2014). Recent progresses on optical arbitrary waveform generation. Frontiers of Optoelectronics, 7(3), 359-375. doi:10.1007/s12200-014-0470-y es_ES
dc.description.references Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 es_ES
dc.description.references Wang, J., Shen, H., Fan, L., Wu, R., Niu, B., Varghese, L. T., … Qi, M. (2015). Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nature Communications, 6(1). doi:10.1038/ncomms6957 es_ES
dc.description.references Maleki, L. (2011). The optoelectronic oscillator. Nature Photonics, 5(12), 728-730. doi:10.1038/nphoton.2011.293 es_ES
dc.description.references Matsko, A. B., Maleki, L., Savchenkov, A. A., & Ilchenko, V. S. (2003). Whispering gallery mode based optoelectronic microwave oscillator. Journal of Modern Optics, 50(15-17), 2523-2542. doi:10.1080/09500340308233582 es_ES
dc.description.references Bolea, M., Mora, J., Ortega, B., & Capmany, J. (2010). Photonic arbitrary waveform generation applicable to multiband UWB communications. Optics Express, 18(25), 26259. doi:10.1364/oe.18.026259 es_ES
dc.description.references Zhang, M.-J., Liu, T.-G., Wang, A.-B., Zheng, J.-Y., Meng, L.-N., Zhang, Z.-X., & Wang, Y.-C. (2011). Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser. Optics Letters, 36(6), 1008. doi:10.1364/ol.36.001008 es_ES
dc.description.references Bertero, M., Miyakawa, M., Boccacci, P., Conte, F., Orikasa, K., & Furutani, M. (2000). Image restoration in chirp-pulse microwave CT (CP-MCT). IEEE Transactions on Biomedical Engineering, 47(5), 690-699. doi:10.1109/10.841341 es_ES
dc.description.references Li, M., Wang, C., Li, W., & Yao, J. (2010). An Unbalanced Temporal Pulse-Shaping System for Chirped Microwave Waveform Generation. IEEE Transactions on Microwave Theory and Techniques, 58(11), 2968-2975. doi:10.1109/tmtt.2010.2079070 es_ES
dc.description.references Hao Chi, & Jianping Yao. (2008). Chirped RF Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Nonlinearly Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 26(10), 1282-1287. doi:10.1109/jlt.2008.917768 es_ES
dc.description.references Wang, C., & Yao, J. (2008). Photonic Generation of Chirped Millimeter-Wave Pulses Based on Nonlinear Frequency-to-Time Mapping in a Nonlinearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 56(2), 542-553. doi:10.1109/tmtt.2007.914639 es_ES
dc.description.references Chi, H., & Yao, J. (2007). All-Fiber Chirped Microwave Pulses Generation Based on Spectral Shaping and Wavelength-to-Time Conversion. IEEE Transactions on Microwave Theory and Techniques, 55(9), 1958-1963. doi:10.1109/tmtt.2007.904084 es_ES
dc.description.references Chao Wang, & Jianping Yao. (2010). Large Time-Bandwidth Product Microwave Arbitrary Waveform Generation Using a Spatially Discrete Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 28(11), 1652-1660. doi:10.1109/jlt.2010.2047093 es_ES
dc.description.references Chao Wang, & Jianping Yao. (2009). Chirped Microwave Pulse Generation Based on Optical Spectral Shaping and Wavelength-to-Time Mapping Using a Sagnac Loop Mirror Incorporating a Chirped Fiber Bragg Grating. Journal of Lightwave Technology, 27(16), 3336-3341. doi:10.1109/jlt.2008.2010561 es_ES
dc.description.references Li, M., & Yao, J. (2011). Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3531-3537. doi:10.1109/tmtt.2011.2169078 es_ES
dc.description.references Bolea, M., Mora, J., Ortega, B., & Capmany, J. (2012). Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability. Optics Express, 20(6), 6728. doi:10.1364/oe.20.006728 es_ES
dc.description.references Dorrer, C. (2009). Statistical analysis of incoherent pulse shaping. Optics Express, 17(5), 3341. doi:10.1364/oe.17.003341 es_ES
dc.description.references Park, Y., & Azaña, J. (2010). Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing. Optics Express, 18(14), 14752. doi:10.1364/oe.18.014752 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem