- -

Between Scylla and Charibdis: eIF2 alpha kinases as targets for cancer chemotherapy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Between Scylla and Charibdis: eIF2 alpha kinases as targets for cancer chemotherapy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno Torres, Marta es_ES
dc.contributor.author Murguía, Jose R. es_ES
dc.date.accessioned 2016-06-13T10:26:01Z
dc.date.available 2016-06-13T10:26:01Z
dc.date.issued 2011-07
dc.identifier.issn 1699-048X
dc.identifier.uri http://hdl.handle.net/10251/65736
dc.description.abstract [EN] The eIF2 alpha kinases integrate translation initiation rates with nutrient availability, thus allowing cells to adapt to nutrient scarcity. Recent evidence has uncovered new functions of these kinases in tumour cell biology, ranging from regulation of cell cycle progression, maintenance of genome stability, control of apoptosis, and cell survival under nutrient stress and hypoxia. Accordingly, active eIF2 alpha kinases modulate the antineoplasic activity of several antitumour drugs, either by exacerbating their cytotoxic effect or by promoting chemoresistance. Understanding of eIF2 alpha kinases molecular roles may provide mechanistic insights into how tumour cells sense and adapt to nutrient restriction, thus helping to implement more effective approaches for cancer chemotherapy. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Clinical & Translational Oncology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject eIF2 alpha phosphorylation es_ES
dc.subject GCN2 es_ES
dc.subject PERK es_ES
dc.subject PKR es_ES
dc.subject Translation es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Between Scylla and Charibdis: eIF2 alpha kinases as targets for cancer chemotherapy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12094-011-0680-3
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Moreno Torres, M.; Murguía, JR. (2011). Between Scylla and Charibdis: eIF2 alpha kinases as targets for cancer chemotherapy. Clinical & Translational Oncology. 13(7):442-445. doi:10.1007/s12094-011-0680-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s12094-011-0680-3 es_ES
dc.description.upvformatpinicio 442 es_ES
dc.description.upvformatpfin 445 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 215016 es_ES
dc.description.references Sonenberg N, Hinnebusch AG (2007) New modes of translational control in development, behavior, and disease. Mol Cell 28:721–729 es_ES
dc.description.references Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450 es_ES
dc.description.references Dever TE, Dar AC, Sicheri F (2007) The eIF2alpha kinases. In: Mathews MB, Sonenberg N, Hershey JWB (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 319–345 es_ES
dc.description.references Wang L, Liu Y, Wu S (2010) The roles of nitric oxide synthase and eIF2alpha kinases in regulation of cell cycle upon UVB-irradiation. Cell Cycle 9:38–42 es_ES
dc.description.references Bouffant RL, Boulben S, Cormier P et al (2008) Inhibition of translation and modification of translation factors during apoptosis induced by the DNA-damaging agent MMS in sea urchin embryos. Exp Cell Res 314:961–968 es_ES
dc.description.references Tvegard T, Soltani H, Skjolberg HC et al (2007) A novel checkpoint mechanism regulating the G1/S transition. Genes Dev 21:649–654 es_ES
dc.description.references Menacho-Marquez M, Perez-Valle J, Arino J et al (2007) Gcn2p regulates a G1/S cell cycle checkpoint in response to DNA damage. Cell Cycle 6:2302–2305 es_ES
dc.description.references Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA (2005) PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 16:5493–5501 es_ES
dc.description.references Brewer JW, Diehl JA (2000) PERK mediates cellcycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A 97:12625–12630 es_ES
dc.description.references Raven JF, Baltzis D, Wang S et al (2008) PKR and PKR-like endoplasmic reticulum kinase induce the proteasome-dependent degradation of cyclin D1 via a mechanism requiring eukaryotic initiation factor 2alpha phosphorylation. J Biol Chem 283:3097–3108 es_ES
dc.description.references Deng J, Harding HP, Raught B et al (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12:1279–1286 es_ES
dc.description.references Jiang HY, Wek RC (2005) GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J 385:371–380 es_ES
dc.description.references Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573 es_ES
dc.description.references Munn DH, Sharma MD, Baban B et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642 es_ES
dc.description.references Usui T, Nagumo Y, Watanabe A et al (2006) Brasilicardin A, a natural immunosuppressant, targets amino acid transport system L. Chem Biol 13:1153–1160 es_ES
dc.description.references Peidis P, Papadakis AI, Rajesh K, Koromilas AE (2010) HDAC pharmacological inhibition promotes cell death through the eIF2alpha kinases PKR and GCN2. Aging 2:669–677 es_ES
dc.description.references Peidis P, Papadakis AI, Muaddi H et al (2010) Doxorubicin bypasses the cytoprotective effects of eIF2alpha phosphorylation and promotes PKR-mediated cell death. Cell Death Differ 18:145–154 es_ES
dc.description.references Lou JJ, Chua YL, Chew EH et al (2010) Inhibition of hypoxia-inducible factor-1alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PloS one 5:e10522 es_ES
dc.description.references Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939 es_ES
dc.description.references Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545–1552 es_ES
dc.description.references Suzuki M, Endo M, Shinohara F et al (2009) Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 64:1115–1122 es_ES
dc.description.references Sequeira SJ, Wen HC, Avivar-Valderas A et al (2009) Inhibition of eIF2alpha dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis. BMC Cell Biol 10:64 es_ES
dc.description.references Monti E, Gariboldi MB (2011) HIF-1 as a target for cancer chemotherapy, chemosensitization and chemoprevention. Curr Mol Pharmacol 4:62–77 es_ES
dc.description.references Zhang J, Cao J, Weng Q et al (2010) Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) by tirapazamine is dependent on eIF2alpha phosphorylation rather than the mTORC1/4E-BP1 pathway. PloS One 5:e13910 es_ES
dc.description.references Ye J, Kumanova M, Hart LS et al (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29:2082–2096 es_ES
dc.description.references Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11 es_ES
dc.description.references Blais JD, Addison CL, Edge R et al (2006) Perkdependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9532 es_ES
dc.description.references Richards NG, Kilberg MS (2006) Asparagine synthetase chemotherapy. Annu Rev Biochem 75:629–654 es_ES
dc.description.references Feng R, Zhai WL, Yang HY et al (2011) Induction of ER stress protects gastric cancer cells against apoptosis induced by cisplatin and doxorubicin through activation of p38 MAPK. Biochem Biophys Res Commun 406:299–304 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem