Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno Torres, Marta | es_ES |
dc.contributor.author | Murguía, Jose R. | es_ES |
dc.date.accessioned | 2016-06-13T10:26:01Z | |
dc.date.available | 2016-06-13T10:26:01Z | |
dc.date.issued | 2011-07 | |
dc.identifier.issn | 1699-048X | |
dc.identifier.uri | http://hdl.handle.net/10251/65736 | |
dc.description.abstract | [EN] The eIF2 alpha kinases integrate translation initiation rates with nutrient availability, thus allowing cells to adapt to nutrient scarcity. Recent evidence has uncovered new functions of these kinases in tumour cell biology, ranging from regulation of cell cycle progression, maintenance of genome stability, control of apoptosis, and cell survival under nutrient stress and hypoxia. Accordingly, active eIF2 alpha kinases modulate the antineoplasic activity of several antitumour drugs, either by exacerbating their cytotoxic effect or by promoting chemoresistance. Understanding of eIF2 alpha kinases molecular roles may provide mechanistic insights into how tumour cells sense and adapt to nutrient restriction, thus helping to implement more effective approaches for cancer chemotherapy. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Clinical & Translational Oncology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | eIF2 alpha phosphorylation | es_ES |
dc.subject | GCN2 | es_ES |
dc.subject | PERK | es_ES |
dc.subject | PKR | es_ES |
dc.subject | Translation | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Between Scylla and Charibdis: eIF2 alpha kinases as targets for cancer chemotherapy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12094-011-0680-3 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Moreno Torres, M.; Murguía, JR. (2011). Between Scylla and Charibdis: eIF2 alpha kinases as targets for cancer chemotherapy. Clinical & Translational Oncology. 13(7):442-445. doi:10.1007/s12094-011-0680-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s12094-011-0680-3 | es_ES |
dc.description.upvformatpinicio | 442 | es_ES |
dc.description.upvformatpfin | 445 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.senia | 215016 | es_ES |
dc.description.references | Sonenberg N, Hinnebusch AG (2007) New modes of translational control in development, behavior, and disease. Mol Cell 28:721–729 | es_ES |
dc.description.references | Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450 | es_ES |
dc.description.references | Dever TE, Dar AC, Sicheri F (2007) The eIF2alpha kinases. In: Mathews MB, Sonenberg N, Hershey JWB (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 319–345 | es_ES |
dc.description.references | Wang L, Liu Y, Wu S (2010) The roles of nitric oxide synthase and eIF2alpha kinases in regulation of cell cycle upon UVB-irradiation. Cell Cycle 9:38–42 | es_ES |
dc.description.references | Bouffant RL, Boulben S, Cormier P et al (2008) Inhibition of translation and modification of translation factors during apoptosis induced by the DNA-damaging agent MMS in sea urchin embryos. Exp Cell Res 314:961–968 | es_ES |
dc.description.references | Tvegard T, Soltani H, Skjolberg HC et al (2007) A novel checkpoint mechanism regulating the G1/S transition. Genes Dev 21:649–654 | es_ES |
dc.description.references | Menacho-Marquez M, Perez-Valle J, Arino J et al (2007) Gcn2p regulates a G1/S cell cycle checkpoint in response to DNA damage. Cell Cycle 6:2302–2305 | es_ES |
dc.description.references | Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA (2005) PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 16:5493–5501 | es_ES |
dc.description.references | Brewer JW, Diehl JA (2000) PERK mediates cellcycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A 97:12625–12630 | es_ES |
dc.description.references | Raven JF, Baltzis D, Wang S et al (2008) PKR and PKR-like endoplasmic reticulum kinase induce the proteasome-dependent degradation of cyclin D1 via a mechanism requiring eukaryotic initiation factor 2alpha phosphorylation. J Biol Chem 283:3097–3108 | es_ES |
dc.description.references | Deng J, Harding HP, Raught B et al (2002) Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 12:1279–1286 | es_ES |
dc.description.references | Jiang HY, Wek RC (2005) GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J 385:371–380 | es_ES |
dc.description.references | Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573 | es_ES |
dc.description.references | Munn DH, Sharma MD, Baban B et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642 | es_ES |
dc.description.references | Usui T, Nagumo Y, Watanabe A et al (2006) Brasilicardin A, a natural immunosuppressant, targets amino acid transport system L. Chem Biol 13:1153–1160 | es_ES |
dc.description.references | Peidis P, Papadakis AI, Rajesh K, Koromilas AE (2010) HDAC pharmacological inhibition promotes cell death through the eIF2alpha kinases PKR and GCN2. Aging 2:669–677 | es_ES |
dc.description.references | Peidis P, Papadakis AI, Muaddi H et al (2010) Doxorubicin bypasses the cytoprotective effects of eIF2alpha phosphorylation and promotes PKR-mediated cell death. Cell Death Differ 18:145–154 | es_ES |
dc.description.references | Lou JJ, Chua YL, Chew EH et al (2010) Inhibition of hypoxia-inducible factor-1alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PloS one 5:e10522 | es_ES |
dc.description.references | Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939 | es_ES |
dc.description.references | Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545–1552 | es_ES |
dc.description.references | Suzuki M, Endo M, Shinohara F et al (2009) Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 64:1115–1122 | es_ES |
dc.description.references | Sequeira SJ, Wen HC, Avivar-Valderas A et al (2009) Inhibition of eIF2alpha dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis. BMC Cell Biol 10:64 | es_ES |
dc.description.references | Monti E, Gariboldi MB (2011) HIF-1 as a target for cancer chemotherapy, chemosensitization and chemoprevention. Curr Mol Pharmacol 4:62–77 | es_ES |
dc.description.references | Zhang J, Cao J, Weng Q et al (2010) Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) by tirapazamine is dependent on eIF2alpha phosphorylation rather than the mTORC1/4E-BP1 pathway. PloS One 5:e13910 | es_ES |
dc.description.references | Ye J, Kumanova M, Hart LS et al (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29:2082–2096 | es_ES |
dc.description.references | Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11 | es_ES |
dc.description.references | Blais JD, Addison CL, Edge R et al (2006) Perkdependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9532 | es_ES |
dc.description.references | Richards NG, Kilberg MS (2006) Asparagine synthetase chemotherapy. Annu Rev Biochem 75:629–654 | es_ES |
dc.description.references | Feng R, Zhai WL, Yang HY et al (2011) Induction of ER stress protects gastric cancer cells against apoptosis induced by cisplatin and doxorubicin through activation of p38 MAPK. Biochem Biophys Res Commun 406:299–304 | es_ES |