Mostrar el registro sencillo del ítem
dc.contributor.author | Ivorra Martínez, Eugenio![]() |
es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José![]() |
es_ES |
dc.contributor.author | Camarasa Baixauli, Josep Gaietà![]() |
es_ES |
dc.contributor.author | Diago, M.P![]() |
es_ES |
dc.contributor.author | Tardaguila, J.![]() |
es_ES |
dc.date.accessioned | 2016-06-13T14:13:42Z | |
dc.date.available | 2016-06-13T14:13:42Z | |
dc.date.issued | 2015-04 | |
dc.identifier.issn | 0956-7135 | |
dc.identifier.uri | http://hdl.handle.net/10251/65777 | |
dc.description | NOTICE: this is the author’s version of a work that was accepted for publication in Food Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Control, [Volume 50, April 2015, Pages 273–282] DOI 10.1016/j.foodcont.2014.09.004 | es_ES |
dc.description.abstract | Wine quality depends mostly on the features of the grapes it is made from. Cluster and berry morphology are key factors in determining grape and wine quality. However, current practices for grapevine quality estimation require time-consuming destructive analysis or largely subjective judgment by experts. The purpose of this paper is to propose a three-dimensional computer vision approach to assessing grape yield components based on new 3D descriptors. To achieve this, firstly a partial three-dimensional model of the grapevine cluster is extracted using stereo vision. After that a number of grapevine quality components are predicted using SVM models based on new 3D descriptors. Experiments confirm that this approach is capable of predicting the main cluster yield components, which are related to quality, such as cluster compactness and berry size (R2 > 0.80, p < 0.05). In addition, other yield components: cluster volume, total berry weight and number of berries, were also estimated using SVM models, obtaining prediction R2 of 0.82, 0.83 and 0.71, respectively. | es_ES |
dc.description.sponsorship | This work has been partially funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA - Spanish National Institute for Agriculture and Food Research and Technology) through research project RTA2012-00062-C04-02, support of European FEDER funds, UPV-SP20120276 and AGL2011-23673 project. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Food Control | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Grape quality | es_ES |
dc.subject | Cluster yield components | es_ES |
dc.subject | Vitis vinifera L | es_ES |
dc.subject | Non-invasive technologies | es_ES |
dc.subject | Stereo-vision | es_ES |
dc.subject | 3D descriptors | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Assessment of grape cluster yield components based on 3D descriptors using stereo vision | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.foodcont.2014.09.004 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2011-23673/ES/INTEGRACION DE TECNOLOGIAS AVANZADAS DE DETECCION EN UNA PLATAFORMA MOVIL MULTISENSOR PARA EL ESTUDIO DE LA VARIABILIDAD ESPACIO-TEMPORAL DEL VIÑEDO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-02/ES/Nuevas técnicas de manipulación usando sensorización integrada para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (MANI-DACSA)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120276/ES/Visión artificial para medir la calidad de la uva/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Ivorra Martínez, E.; Sánchez Salmerón, AJ.; Camarasa Baixauli, JG.; Diago, M.; Tardaguila, J. (2015). Assessment of grape cluster yield components based on 3D descriptors using stereo vision. Food Control. 50:273-282. https://doi.org/10.1016/j.foodcont.2014.09.004 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.foodcont.2014.09.004 | es_ES |
dc.description.upvformatpinicio | 273 | es_ES |
dc.description.upvformatpfin | 282 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.relation.senia | 281843 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |