- -

Development of a versatile biotinylated material based on SU-8.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Development of a versatile biotinylated material based on SU-8.

Show full item record

Ortega Higueruelo, FJ.; Bañuls Polo, M.; Sanza, FJ.; Laguna, MF.; Holgado Bolaños, M.; Casquel Del Campo, R.; Angulo Barrios, C.... (2013). Development of a versatile biotinylated material based on SU-8. Journal of Materials Chemistry B. 1:2750-2756. doi:10.1039/c3tb20323a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65816

Files in this item

Item Metadata

Title: Development of a versatile biotinylated material based on SU-8.
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
[EN] The negative epoxy-based SU-8 photoresist has a wide variety of applications within the semiconductor industry, photonics and lab-on-a-chip devices, and it is emerging as an alternative to silicon-based devices for ...[+]
Subjects: IMMOBILIZATION , PHOTORESIST , SURFACE MODIFICATION , BIOMOLECULES , MEMS , ASSAYS , DNA , PHOTOLITHOGRAPHY , MICROSTRUCTURES , FABRICATION
Copyrigths: Reserva de todos los derechos
Source:
Journal of Materials Chemistry B. (issn: 2050-750X )
DOI: 10.1039/c3tb20323a
Publisher:
Royal Society of Chemistry
Publisher version: https://dx.doi.org/10.1039/c3tb20323a
Thanks:
Financial support from Ministerio de Economia y Competitividad (MINECO TEC2012-31145) is acknowledged.
Type: Artículo

References

Liu, C. (2007). Recent Developments in Polymer MEMS. Advanced Materials, 19(22), 3783-3790. doi:10.1002/adma.200701709

Bêche, B., Papet, P., Debarnot, D., Gaviot, E., Zyss, J., & Poncin-Epaillard, F. (2005). Fluorine plasma treatment on SU-8 polymer for integrated optics. Optics Communications, 246(1-3), 25-28. doi:10.1016/j.optcom.2004.10.081

Chung, C. K., & Hong, Y. Z. (2006). Surface modification of SU8 photoresist for shrinkage improvement in a monolithic MEMS microstructure. Journal of Micromechanics and Microengineering, 17(2), 207-212. doi:10.1088/0960-1317/17/2/004 [+]
Liu, C. (2007). Recent Developments in Polymer MEMS. Advanced Materials, 19(22), 3783-3790. doi:10.1002/adma.200701709

Bêche, B., Papet, P., Debarnot, D., Gaviot, E., Zyss, J., & Poncin-Epaillard, F. (2005). Fluorine plasma treatment on SU-8 polymer for integrated optics. Optics Communications, 246(1-3), 25-28. doi:10.1016/j.optcom.2004.10.081

Chung, C. K., & Hong, Y. Z. (2006). Surface modification of SU8 photoresist for shrinkage improvement in a monolithic MEMS microstructure. Journal of Micromechanics and Microengineering, 17(2), 207-212. doi:10.1088/0960-1317/17/2/004

Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., & Vettiger, P. (1997). SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 7(3), 121-124. doi:10.1088/0960-1317/7/3/010

Ribeiro, J. C., Minas, G., Turmezei, P., Wolffenbuttel, R. F., & Correia, J. H. (2005). A SU-8 fluidic microsystem for biological fluids analysis. Sensors and Actuators A: Physical, 123-124, 77-81. doi:10.1016/j.sna.2005.03.032

Sikanen, T., Tuomikoski, S., Ketola, R. A., Kostiainen, R., Franssila, S., & Kotiaho, T. (2005). Characterization of SU-8 for electrokinetic microfluidic applications. Lab on a Chip, 5(8), 888. doi:10.1039/b503016a

Lee, J., Shin, H., Kim, S., Hong, S., Chung, J., Park, H., & Moon, J. (2003). Fabrication of Atomic Force Microscope Probe with Low Spring Constant Using SU-8 Photoresist. Japanese Journal of Applied Physics, 42(Part 2, No. 10A), L1171-L1174. doi:10.1143/jjap.42.l1171

Genolet, G., Despont, M., Vettiger, P., Anselmetti, D., & de Rooij, N. F. (2000). All-photoplastic, soft cantilever cassette probe for scanning force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 18(2), 617. doi:10.1116/1.591248

Koerner, T., Brown, L., Xie, R., & Oleschuk, R. D. (2005). Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators B: Chemical, 107(2), 632-639. doi:10.1016/j.snb.2004.11.035

Schneider, A., Su, B., Button, T. W., Singleton, L., Wilhelmi, O., Huq, S. E., … Lawes, R. A. (2002). Comparison of PMMA and SU-8 resist moulds for embossing of PZT to produce high-aspect-ratio microstructures using LIGA process. Microsystem Technologies, 8(2-3), 88-92. doi:10.1007/s00542-001-0141-y

Linan Jiang, Gerhardt, K. P., Myer, B., Zohar, Y., & Pau, S. (2008). Evanescent-Wave Spectroscopy Using an SU-8 Waveguide for Rapid Quantitative Detection of Biomolecules. Journal of Microelectromechanical Systems, 17(6), 1495-1500. doi:10.1109/jmems.2008.2006814

Chang-Yen, D. A., & Gale, B. K. (2003). An integrated optical oxygen sensor fabricated using rapid-prototyping techniques. Lab on a Chip, 3(4), 297. doi:10.1039/b305358j

Wang, Y., Bachman, M., Sims, C. E., Li, G. P., & Allbritton, N. L. (2006). Simple Photografting Method to Chemically Modify and Micropattern the Surface of SU-8 Photoresist. Langmuir, 22(6), 2719-2725. doi:10.1021/la053188e

Marie, R., Schmid, S., Johansson, A., Ejsing, L., Nordström, M., Häfliger, D., … Dufva, M. (2006). Immobilisation of DNA to polymerised SU-8 photoresist. Biosensors and Bioelectronics, 21(7), 1327-1332. doi:10.1016/j.bios.2005.03.004

Blagoi, G., Keller, S., Johansson, A., Boisen, A., & Dufva, M. (2008). Functionalization of SU-8 photoresist surfaces with IgG proteins. Applied Surface Science, 255(5), 2896-2902. doi:10.1016/j.apsusc.2008.08.089

Joshi, M., Pinto, R., Rao, V. R., & Mukherji, S. (2007). Silanization and antibody immobilization on SU-8. Applied Surface Science, 253(6), 3127-3132. doi:10.1016/j.apsusc.2006.07.017

Joshi, M., Kale, N., Lal, R., Ramgopal Rao, V., & Mukherji, S. (2007). A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS. Biosensors and Bioelectronics, 22(11), 2429-2435. doi:10.1016/j.bios.2006.08.045

Deepu, A., Sai, V. V. R., & Mukherji, S. (2008). Simple surface modification techniques for immobilization of biomolecules on SU-8. Journal of Materials Science: Materials in Medicine, 20(S1), 25-28. doi:10.1007/s10856-008-3471-9

Qvortrup, K., Taveras, K. M., Thastrup, O., & Nielsen, T. E. (2011). Chemical synthesis on SU-8. Chem. Commun., 47(4), 1309-1311. doi:10.1039/c0cc03876h

Cavalli, G., Banu, S., Ranasinghe, R. T., Broder, G. R., Martins, H. F. P., Neylon, C., … Roach, P. L. (2007). Multistep Synthesis on SU-8:  Combining Microfabrication and Solid-Phase Chemistry on a Single Material. Journal of Combinatorial Chemistry, 9(3), 462-472. doi:10.1021/cc060079p

Sethi, D., Kumar, A., Gandhi, R. P., Kumar, P., & Gupta, K. C. (2010). New Protocol for Oligonucleotide Microarray Fabrication using SU-8-Coated Glass Microslides. Bioconjugate Chemistry, 21(9), 1703-1708. doi:10.1021/bc100262n

Broder, G. R., Ranasinghe, R. T., She, J. K., Banu, S., Birtwell, S. W., Cavalli, G., … Morgan, H. (2008). Diffractive Micro Bar Codes for Encoding of Biomolecules in Multiplexed Assays. Analytical Chemistry, 80(6), 1902-1909. doi:10.1021/ac7018574

Birtwell, S. W., Broder, G. R., Roach, P. L., & Morgan, H. (2012). Multiplexed suspension array platform for high-throughput protein assays. Biomedical Microdevices, 14(4), 651-657. doi:10.1007/s10544-012-9641-z

Kim, H.-N., Kang, J.-H., Jin, W.-M., & Moon, J. H. (2011). Surface modification of 2D/3D SU-8 patterns with a swelling–deswelling method. Soft Matter, 7(6), 2989. doi:10.1039/c0sm01006e

Shew, B. Y., Cheng, Y. C., & Tsai, Y. H. (2008). Monolithic SU-8 micro-interferometer for biochemical detections. Sensors and Actuators A: Physical, 141(2), 299-306. doi:10.1016/j.sna.2007.08.029

Holgado, M., Barrios, C. A., Ortega, F. J., Sanza, F. J., Casquel, R., Laguna, M. F., … Maquieira, A. (2010). Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars. Biosensors and Bioelectronics, 25(12), 2553-2558. doi:10.1016/j.bios.2010.04.042

Sanza, F. J., Holgado, M., Ortega, F. J., Casquel, R., López-Romero, D., Bañuls, M. J., … Maquieira, A. (2011). Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing. Biosensors and Bioelectronics, 26(12), 4842-4847. doi:10.1016/j.bios.2011.06.010

Sanza, F. J., Laguna, M. F., Casquel, R., Holgado, M., Barrios, C. A., Ortega, F. J., … Puchades, R. (2011). Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing. Applied Surface Science, 257(12), 5403-5407. doi:10.1016/j.apsusc.2010.10.010

Ortega, F. J., Bañuls, M.-J., Sanza, F. J., Casquel, R., Laguna, M. F., Holgado, M., … Puchades, R. (2012). Biomolecular Interaction Analysis of Gestrinone-anti-Gestrinone Using Arrays of High Aspect Ratio SU-8 Nanopillars. Biosensors, 2(3), 291-304. doi:10.3390/bios2030291

A. Fleming, S. (1995). Chemical reagents in photoaffinity labeling. Tetrahedron, 51(46), 12479-12520. doi:10.1016/0040-4020(95)00598-3

Blagoi, G., Keller, S., Persson, F., Boisen, A., & Jakobsen, M. H. (2008). Photochemical Modification and Patterning of SU-8 Using Anthraquinone Photolinkers. Langmuir, 24(18), 9929-9932. doi:10.1021/la800948w

Wilchek, M., & Bayer, E. A. (1988). The avidin-biotin complex in bioanalytical applications. Analytical Biochemistry, 171(1), 1-32. doi:10.1016/0003-2697(88)90120-0

Dontha, N., Nowall, W. B., & Kuhr, W. G. (1997). Generation of Biotin/Avidin/Enzyme Nanostructures with Maskless Photolithography. Analytical Chemistry, 69(14), 2619-2625. doi:10.1021/ac9702094

Wilde, L. M., Farace, G., Roberts, C. J., Davies, M. C., Sanders, G. H. W., Tendler, S. J. B., & Williams, P. M. (2001). Molecular patterning on carbon based surfaces through photobiotin activation. The Analyst, 126(2), 195-198. doi:10.1039/b008475l

Choi, H. J., Kim, N. H., Chung, B. H., & Seong, G. H. (2005). Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin. Analytical Biochemistry, 347(1), 60-66. doi:10.1016/j.ab.2005.08.015

Brun, E. M., Hernández-Albors, A., Ventura, R., Puchades, R., & Maquieira, Á. (2010). Enzyme-linked immunosorbent assays for the synthetic steroid gestrinone. Talanta, 82(4), 1581-1587. doi:10.1016/j.talanta.2010.07.067

Benlarbi, M., Blum, L. J., & Marquette, C. A. (2012). SU-8-carbon composite as conductive photoresist for biochip applications. Biosensors and Bioelectronics, 38(1), 220-225. doi:10.1016/j.bios.2012.05.026

Aung, K. M. M., Ho, X., & Su, X. (2008). DNA assembly on streptavidin modified surface: A study using quartz crystal microbalance with dissipation or resistance measurements. Sensors and Actuators B: Chemical, 131(2), 371-378. doi:10.1016/j.snb.2007.11.058

Malainou, A., Petrou, P. S., Kakabakos, S. E., Gogolides, E., & Tserepi, A. (2012). Creating highly dense and uniform protein and DNA microarrays through photolithography and plasma modification of glass substrates. Biosensors and Bioelectronics, 34(1), 273-281. doi:10.1016/j.bios.2012.02.020

[-]

This item appears in the following Collection(s)

Show full item record