- -

Development of a versatile biotinylated material based on SU-8

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a versatile biotinylated material based on SU-8

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortega Higueruelo, Francisco José es_ES
dc.contributor.author Bañuls Polo, María-José es_ES
dc.contributor.author Sanza, Francisco J. es_ES
dc.contributor.author Laguna, Mari Fe es_ES
dc.contributor.author Holgado Bolaños, Miguel es_ES
dc.contributor.author Casquel Del Campo, Rafael es_ES
dc.contributor.author Angulo Barrios, Carlos es_ES
dc.contributor.author López Romero, David es_ES
dc.contributor.author Maquieira Catala, Ángel es_ES
dc.contributor.author Puchades, Rosa es_ES
dc.date.accessioned 2016-06-14T06:35:20Z
dc.date.available 2016-06-14T06:35:20Z
dc.date.issued 2013
dc.identifier.issn 2050-750X
dc.identifier.uri http://hdl.handle.net/10251/65816
dc.description.abstract [EN] The negative epoxy-based SU-8 photoresist has a wide variety of applications within the semiconductor industry, photonics and lab-on-a-chip devices, and it is emerging as an alternative to silicon-based devices for sensing purposes. In the present work, biotinylation of the SU-8 polymer surface promoted by light is reported. As a result, a novel, effective, and low-cost material, focusing on the immobilization of bioreceptors and consequent biosensing, is developed. This material allows the spatial discrimination depending on the irradiation of desired areas. The most salient feature is that the photobiotin may be directly incorporated into the SU-8 curing process, consequently reducing time and cost. The potential use of this substrate is demonstrated by the immunoanalytical detection of the synthetic steroid gestrinone, showing excellent performances. Moreover, the naked eye biodetection due to the transparent SU-8 substrate, and simple instrumental quantification are additional advantages. es_ES
dc.description.sponsorship Financial support from Ministerio de Economia y Competitividad (MINECO TEC2012-31145) is acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry B es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject IMMOBILIZATION es_ES
dc.subject PHOTORESIST es_ES
dc.subject SURFACE MODIFICATION es_ES
dc.subject BIOMOLECULES es_ES
dc.subject MEMS es_ES
dc.subject ASSAYS es_ES
dc.subject DNA es_ES
dc.subject PHOTOLITHOGRAPHY es_ES
dc.subject MICROSTRUCTURES es_ES
dc.subject FABRICATION es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Development of a versatile biotinylated material based on SU-8 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3tb20323a
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2012-31145/ES/BIOCHIP KITS BASADOS EN CELDAS BIOFOTONICAS Y PLATAFORMAS AVANZADAS DE INTERROGACION OPTICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Ortega Higueruelo, FJ.; Bañuls Polo, M.; Sanza, FJ.; Laguna, MF.; Holgado Bolaños, M.; Casquel Del Campo, R.; Angulo Barrios, C.... (2013). Development of a versatile biotinylated material based on SU-8. Journal of Materials Chemistry B. 1:2750-2756. https://doi.org/10.1039/c3tb20323a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1039/c3tb20323a es_ES
dc.description.upvformatpinicio 2750 es_ES
dc.description.upvformatpfin 2756 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.relation.senia 252224 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Liu, C. (2007). Recent Developments in Polymer MEMS. Advanced Materials, 19(22), 3783-3790. doi:10.1002/adma.200701709 es_ES
dc.description.references Bêche, B., Papet, P., Debarnot, D., Gaviot, E., Zyss, J., & Poncin-Epaillard, F. (2005). Fluorine plasma treatment on SU-8 polymer for integrated optics. Optics Communications, 246(1-3), 25-28. doi:10.1016/j.optcom.2004.10.081 es_ES
dc.description.references Chung, C. K., & Hong, Y. Z. (2006). Surface modification of SU8 photoresist for shrinkage improvement in a monolithic MEMS microstructure. Journal of Micromechanics and Microengineering, 17(2), 207-212. doi:10.1088/0960-1317/17/2/004 es_ES
dc.description.references Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., & Vettiger, P. (1997). SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 7(3), 121-124. doi:10.1088/0960-1317/7/3/010 es_ES
dc.description.references Ribeiro, J. C., Minas, G., Turmezei, P., Wolffenbuttel, R. F., & Correia, J. H. (2005). A SU-8 fluidic microsystem for biological fluids analysis. Sensors and Actuators A: Physical, 123-124, 77-81. doi:10.1016/j.sna.2005.03.032 es_ES
dc.description.references Sikanen, T., Tuomikoski, S., Ketola, R. A., Kostiainen, R., Franssila, S., & Kotiaho, T. (2005). Characterization of SU-8 for electrokinetic microfluidic applications. Lab on a Chip, 5(8), 888. doi:10.1039/b503016a es_ES
dc.description.references Lee, J., Shin, H., Kim, S., Hong, S., Chung, J., Park, H., & Moon, J. (2003). Fabrication of Atomic Force Microscope Probe with Low Spring Constant Using SU-8 Photoresist. Japanese Journal of Applied Physics, 42(Part 2, No. 10A), L1171-L1174. doi:10.1143/jjap.42.l1171 es_ES
dc.description.references Genolet, G., Despont, M., Vettiger, P., Anselmetti, D., & de Rooij, N. F. (2000). All-photoplastic, soft cantilever cassette probe for scanning force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 18(2), 617. doi:10.1116/1.591248 es_ES
dc.description.references Koerner, T., Brown, L., Xie, R., & Oleschuk, R. D. (2005). Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensors and Actuators B: Chemical, 107(2), 632-639. doi:10.1016/j.snb.2004.11.035 es_ES
dc.description.references Schneider, A., Su, B., Button, T. W., Singleton, L., Wilhelmi, O., Huq, S. E., … Lawes, R. A. (2002). Comparison of PMMA and SU-8 resist moulds for embossing of PZT to produce high-aspect-ratio microstructures using LIGA process. Microsystem Technologies, 8(2-3), 88-92. doi:10.1007/s00542-001-0141-y es_ES
dc.description.references Linan Jiang, Gerhardt, K. P., Myer, B., Zohar, Y., & Pau, S. (2008). Evanescent-Wave Spectroscopy Using an SU-8 Waveguide for Rapid Quantitative Detection of Biomolecules. Journal of Microelectromechanical Systems, 17(6), 1495-1500. doi:10.1109/jmems.2008.2006814 es_ES
dc.description.references Chang-Yen, D. A., & Gale, B. K. (2003). An integrated optical oxygen sensor fabricated using rapid-prototyping techniques. Lab on a Chip, 3(4), 297. doi:10.1039/b305358j es_ES
dc.description.references Wang, Y., Bachman, M., Sims, C. E., Li, G. P., & Allbritton, N. L. (2006). Simple Photografting Method to Chemically Modify and Micropattern the Surface of SU-8 Photoresist. Langmuir, 22(6), 2719-2725. doi:10.1021/la053188e es_ES
dc.description.references Marie, R., Schmid, S., Johansson, A., Ejsing, L., Nordström, M., Häfliger, D., … Dufva, M. (2006). Immobilisation of DNA to polymerised SU-8 photoresist. Biosensors and Bioelectronics, 21(7), 1327-1332. doi:10.1016/j.bios.2005.03.004 es_ES
dc.description.references Blagoi, G., Keller, S., Johansson, A., Boisen, A., & Dufva, M. (2008). Functionalization of SU-8 photoresist surfaces with IgG proteins. Applied Surface Science, 255(5), 2896-2902. doi:10.1016/j.apsusc.2008.08.089 es_ES
dc.description.references Joshi, M., Pinto, R., Rao, V. R., & Mukherji, S. (2007). Silanization and antibody immobilization on SU-8. Applied Surface Science, 253(6), 3127-3132. doi:10.1016/j.apsusc.2006.07.017 es_ES
dc.description.references Joshi, M., Kale, N., Lal, R., Ramgopal Rao, V., & Mukherji, S. (2007). A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS. Biosensors and Bioelectronics, 22(11), 2429-2435. doi:10.1016/j.bios.2006.08.045 es_ES
dc.description.references Deepu, A., Sai, V. V. R., & Mukherji, S. (2008). Simple surface modification techniques for immobilization of biomolecules on SU-8. Journal of Materials Science: Materials in Medicine, 20(S1), 25-28. doi:10.1007/s10856-008-3471-9 es_ES
dc.description.references Qvortrup, K., Taveras, K. M., Thastrup, O., & Nielsen, T. E. (2011). Chemical synthesis on SU-8. Chem. Commun., 47(4), 1309-1311. doi:10.1039/c0cc03876h es_ES
dc.description.references Cavalli, G., Banu, S., Ranasinghe, R. T., Broder, G. R., Martins, H. F. P., Neylon, C., … Roach, P. L. (2007). Multistep Synthesis on SU-8:  Combining Microfabrication and Solid-Phase Chemistry on a Single Material. Journal of Combinatorial Chemistry, 9(3), 462-472. doi:10.1021/cc060079p es_ES
dc.description.references Sethi, D., Kumar, A., Gandhi, R. P., Kumar, P., & Gupta, K. C. (2010). New Protocol for Oligonucleotide Microarray Fabrication using SU-8-Coated Glass Microslides. Bioconjugate Chemistry, 21(9), 1703-1708. doi:10.1021/bc100262n es_ES
dc.description.references Broder, G. R., Ranasinghe, R. T., She, J. K., Banu, S., Birtwell, S. W., Cavalli, G., … Morgan, H. (2008). Diffractive Micro Bar Codes for Encoding of Biomolecules in Multiplexed Assays. Analytical Chemistry, 80(6), 1902-1909. doi:10.1021/ac7018574 es_ES
dc.description.references Birtwell, S. W., Broder, G. R., Roach, P. L., & Morgan, H. (2012). Multiplexed suspension array platform for high-throughput protein assays. Biomedical Microdevices, 14(4), 651-657. doi:10.1007/s10544-012-9641-z es_ES
dc.description.references Kim, H.-N., Kang, J.-H., Jin, W.-M., & Moon, J. H. (2011). Surface modification of 2D/3D SU-8 patterns with a swelling–deswelling method. Soft Matter, 7(6), 2989. doi:10.1039/c0sm01006e es_ES
dc.description.references Shew, B. Y., Cheng, Y. C., & Tsai, Y. H. (2008). Monolithic SU-8 micro-interferometer for biochemical detections. Sensors and Actuators A: Physical, 141(2), 299-306. doi:10.1016/j.sna.2007.08.029 es_ES
dc.description.references Holgado, M., Barrios, C. A., Ortega, F. J., Sanza, F. J., Casquel, R., Laguna, M. F., … Maquieira, A. (2010). Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars. Biosensors and Bioelectronics, 25(12), 2553-2558. doi:10.1016/j.bios.2010.04.042 es_ES
dc.description.references Sanza, F. J., Holgado, M., Ortega, F. J., Casquel, R., López-Romero, D., Bañuls, M. J., … Maquieira, A. (2011). Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing. Biosensors and Bioelectronics, 26(12), 4842-4847. doi:10.1016/j.bios.2011.06.010 es_ES
dc.description.references Sanza, F. J., Laguna, M. F., Casquel, R., Holgado, M., Barrios, C. A., Ortega, F. J., … Puchades, R. (2011). Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing. Applied Surface Science, 257(12), 5403-5407. doi:10.1016/j.apsusc.2010.10.010 es_ES
dc.description.references Ortega, F. J., Bañuls, M.-J., Sanza, F. J., Casquel, R., Laguna, M. F., Holgado, M., … Puchades, R. (2012). Biomolecular Interaction Analysis of Gestrinone-anti-Gestrinone Using Arrays of High Aspect Ratio SU-8 Nanopillars. Biosensors, 2(3), 291-304. doi:10.3390/bios2030291 es_ES
dc.description.references A. Fleming, S. (1995). Chemical reagents in photoaffinity labeling. Tetrahedron, 51(46), 12479-12520. doi:10.1016/0040-4020(95)00598-3 es_ES
dc.description.references Blagoi, G., Keller, S., Persson, F., Boisen, A., & Jakobsen, M. H. (2008). Photochemical Modification and Patterning of SU-8 Using Anthraquinone Photolinkers. Langmuir, 24(18), 9929-9932. doi:10.1021/la800948w es_ES
dc.description.references Wilchek, M., & Bayer, E. A. (1988). The avidin-biotin complex in bioanalytical applications. Analytical Biochemistry, 171(1), 1-32. doi:10.1016/0003-2697(88)90120-0 es_ES
dc.description.references Dontha, N., Nowall, W. B., & Kuhr, W. G. (1997). Generation of Biotin/Avidin/Enzyme Nanostructures with Maskless Photolithography. Analytical Chemistry, 69(14), 2619-2625. doi:10.1021/ac9702094 es_ES
dc.description.references Wilde, L. M., Farace, G., Roberts, C. J., Davies, M. C., Sanders, G. H. W., Tendler, S. J. B., & Williams, P. M. (2001). Molecular patterning on carbon based surfaces through photobiotin activation. The Analyst, 126(2), 195-198. doi:10.1039/b008475l es_ES
dc.description.references Choi, H. J., Kim, N. H., Chung, B. H., & Seong, G. H. (2005). Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin. Analytical Biochemistry, 347(1), 60-66. doi:10.1016/j.ab.2005.08.015 es_ES
dc.description.references Brun, E. M., Hernández-Albors, A., Ventura, R., Puchades, R., & Maquieira, Á. (2010). Enzyme-linked immunosorbent assays for the synthetic steroid gestrinone. Talanta, 82(4), 1581-1587. doi:10.1016/j.talanta.2010.07.067 es_ES
dc.description.references Benlarbi, M., Blum, L. J., & Marquette, C. A. (2012). SU-8-carbon composite as conductive photoresist for biochip applications. Biosensors and Bioelectronics, 38(1), 220-225. doi:10.1016/j.bios.2012.05.026 es_ES
dc.description.references Aung, K. M. M., Ho, X., & Su, X. (2008). DNA assembly on streptavidin modified surface: A study using quartz crystal microbalance with dissipation or resistance measurements. Sensors and Actuators B: Chemical, 131(2), 371-378. doi:10.1016/j.snb.2007.11.058 es_ES
dc.description.references Malainou, A., Petrou, P. S., Kakabakos, S. E., Gogolides, E., & Tserepi, A. (2012). Creating highly dense and uniform protein and DNA microarrays through photolithography and plasma modification of glass substrates. Biosensors and Bioelectronics, 34(1), 273-281. doi:10.1016/j.bios.2012.02.020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem