- -

Designing bifunctional acid-base mesoporous hybrid catalysts for cascade reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Designing bifunctional acid-base mesoporous hybrid catalysts for cascade reactions

Mostrar el registro completo del ítem

Gianotti, E.; Díaz Morales, UM.; Velty, A.; Corma Canós, A. (2013). Designing bifunctional acid-base mesoporous hybrid catalysts for cascade reactions. Catalysis Science and Technology. 3(10):2677-2688. https://doi.org/10.1039/c3cy00269a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66091

Ficheros en el ítem

Metadatos del ítem

Título: Designing bifunctional acid-base mesoporous hybrid catalysts for cascade reactions
Autor: Gianotti, Enrica Díaz Morales, Urbano Manuel Velty, Alexandra Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Bifunctional mesoporous hybrid materials, containing both proton sponges and acid groups, have been prepared following different synthetic routes: co-condensation processes (sol-gel or micellar one-pot routes) or ...[+]
Palabras clave: Bond-forming reactions , Silica nanoparticles , Molecular-sieves , Henry Reaction , Organosilica , Inhibitors , System , Condensation , Selectivity , Strategies
Derechos de uso: Reserva de todos los derechos
Fuente:
Catalysis Science and Technology. (issn: 2044-4753 )
DOI: 10.1039/c3cy00269a
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c3cy00269a
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
info:eu-repo/grantAgreement/EC/FP7/252367/EU/Decomposition of Structured Tensors, Algorithms and Characterization./
info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
Agradecimientos:
The authors thank the Spanish Government for financial support by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267. EG thanks the Marie Curie Fellowship ...[+]
Tipo: Artículo

References

Shylesh, S., & Thiel, W. R. (2010). Bifunctional Acid-Base Cooperativity in Heterogeneous Catalytic Reactions: Advances in Silica Supported Organic Functional Groups. ChemCatChem, 3(2), 278-287. doi:10.1002/cctc.201000353

Sharma, K. K., Buckley, R. P., & Asefa, T. (2008). Optimizing Acid−Base Bifunctional Mesoporous Catalysts for the Henry Reaction: Effects of the Surface Density and Site Isolation of Functional Groups. Langmuir, 24(24), 14306-14320. doi:10.1021/la8030107

Bass, J. D., Solovyov, A., Pascall, A. J., & Katz, A. (2006). Acid−Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis:  A Comparative Investigation of Model Primary Amine Catalysts. Journal of the American Chemical Society, 128(11), 3737-3747. doi:10.1021/ja057395c [+]
Shylesh, S., & Thiel, W. R. (2010). Bifunctional Acid-Base Cooperativity in Heterogeneous Catalytic Reactions: Advances in Silica Supported Organic Functional Groups. ChemCatChem, 3(2), 278-287. doi:10.1002/cctc.201000353

Sharma, K. K., Buckley, R. P., & Asefa, T. (2008). Optimizing Acid−Base Bifunctional Mesoporous Catalysts for the Henry Reaction: Effects of the Surface Density and Site Isolation of Functional Groups. Langmuir, 24(24), 14306-14320. doi:10.1021/la8030107

Bass, J. D., Solovyov, A., Pascall, A. J., & Katz, A. (2006). Acid−Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis:  A Comparative Investigation of Model Primary Amine Catalysts. Journal of the American Chemical Society, 128(11), 3737-3747. doi:10.1021/ja057395c

Bass, J. D., & Katz, A. (2006). Bifunctional Surface Imprinting of Silica:  Thermolytic Synthesis and Characterization of Discrete Thiol−Amine Functional Group Pairs. Chemistry of Materials, 18(6), 1611-1620. doi:10.1021/cm052382j

Coutinho, D., Madhugiri, S., & Balkus Jr., K. J. (2004). Synthesis and Characterization of Organosilane Functionalized DAM-1 Mesoporous Silica. Journal of Porous Materials, 11(4), 239-254. doi:10.1023/b:jopo.0000046351.21904.77

Huh, S., Chen, H.-T., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System. Journal of the American Chemical Society, 126(4), 1010-1011. doi:10.1021/ja0398161

Huh, S., Chen, H.-T., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2005). Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres. Angewandte Chemie International Edition, 44(12), 1826-1830. doi:10.1002/anie.200462424

Shiju, N. R., Alberts, A. H., Khalid, S., Brown, D. R., & Rothenberg, G. (2011). Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angewandte Chemie International Edition, 50(41), 9615-9619. doi:10.1002/anie.201101449

Motokura, K., Tomita, M., Tada, M., & Iwasawa, Y. (2008). Acid-Base Bifunctional Catalysis of Silica-Alumina-Supported Organic Amines for Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 14(13), 4017-4027. doi:10.1002/chem.200702048

Huang, Y., Xu, S., & Lin, V. S.-Y. (2010). Bifunctionalized Mesoporous Materials with Site-Separated Brønsted Acids and Bases: Catalyst for a Two-Step Reaction Sequence. Angewandte Chemie International Edition, 50(3), 661-664. doi:10.1002/anie.201004572

Shylesh, S., Wagner, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Cooperative Acid-Base Effects with Functionalized Mesoporous Silica Nanoparticles: Applications in Carbon-Carbon Bond-Formation Reactions. Chemistry - A European Journal, 15(29), 7052-7062. doi:10.1002/chem.200900851

Jaroniec, M. (2006). Organosilica the conciliator. Nature, 442(7103), 638-640. doi:10.1038/442638a

Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2006). Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation. Journal of the American Chemical Society, 128(27), 8718-8719. doi:10.1021/ja0622960

Shylesh, S., Wagener, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions. Angewandte Chemie International Edition, 49(1), 184-187. doi:10.1002/anie.200903985

Zeidan, R. K., Hwang, S.-J., & Davis, M. E. (2006). Multifunctional Heterogeneous Catalysts: SBA-15-Containing Primary Amines and Sulfonic Acids. Angewandte Chemie International Edition, 45(38), 6332-6335. doi:10.1002/anie.200602243

Huang, Y., Trewyn, B. G., Chen, H.-T., & Lin, V. S.-Y. (2008). One-pot reaction cascades catalyzed by base- and acid-functionalized mesoporous silica nanoparticles. New Journal of Chemistry, 32(8), 1311. doi:10.1039/b806664g

Yang, H., Li, G., Ma, Z., Chao, J., & Guo, Z. (2010). Three-dimensional cubic mesoporous materials with a built-in N-heterocyclic carbene for Suzuki–Miyaura coupling of aryl chlorides and C(sp3)-chlorides. Journal of Catalysis, 276(1), 123-133. doi:10.1016/j.jcat.2010.09.004

Zhao, H., Yu, N., Wang, J., Zhuang, D., Ding, Y., Tan, R., & Yin, D. (2009). Preparation and catalytic activity of periodic mesoporous organosilica incorporating Lewis acidic chloroindate(III) ionic liquid moieties. Microporous and Mesoporous Materials, 122(1-3), 240-246. doi:10.1016/j.micromeso.2009.03.006

Nguyen, T. P., Hesemann, P., Gaveau, P., & Moreau, J. J. E. (2009). Periodic mesoporous organosilica containing ionic bis-aryl-imidazolium entities: Heterogeneous precursors for silica-hybrid-supported NHC complexes. Journal of Materials Chemistry, 19(24), 4164. doi:10.1039/b900431a

Trilla, M., Pleixats, R., Man, M. W. C., & Bied, C. (2009). Organic–inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts as recyclable organocatalysts for Knoevenagel condensations. Green Chemistry, 11(11), 1815. doi:10.1039/b916767f

Xie, Y., Sharma, K. K., Anan, A., Wang, G., Biradar, A. V., & Asefa, T. (2009). Efficient solid-base catalysts for aldol reaction by optimizing the density and type of organoamine groups on nanoporous silica. Journal of Catalysis, 265(2), 131-140. doi:10.1016/j.jcat.2009.04.018

Motokura, K., Tada, M., & Iwasawa, Y. (2007). Heterogeneous Organic Base-Catalyzed Reactions Enhanced by Acid Supports. Journal of the American Chemical Society, 129(31), 9540-9541. doi:10.1021/ja0704333

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k

Sanchez, C., Rozes, L., Ribot, F., Laberty-Robert, C., Grosso, D., Sassoye, C., … Nicole, L. (2010). «Chimie douce»: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 13(1-2), 3-39. doi:10.1016/j.crci.2009.06.001

Ford, D. M., Simanek, E. E., & Shantz, D. F. (2005). Engineering nanospaces: ordered mesoporous silicas as model substrates for building complex hybrid materials. Nanotechnology, 16(7), S458-S475. doi:10.1088/0957-4484/16/7/022

Pope, E. J. A., & Mackenzie, J. D. (1986). Sol-gel processing of silica. Journal of Non-Crystalline Solids, 87(1-2), 185-198. doi:10.1016/s0022-3093(86)80078-3

Winter, R., Chan, J.-B., Frattini, R., & Jonas, J. (1988). The effect of fluoride on the sol-gel process. Journal of Non-Crystalline Solids, 105(3), 214-222. doi:10.1016/0022-3093(88)90310-9

Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j

Díaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821j

Mehdi, A., Reyé, C., Brandès, S., Guilard, R., & Corriu, R. J. P. (2005). Synthesis of large-pore ordered mesoporous silicas containing aminopropyl groups. New Journal of Chemistry, 29(7), 965. doi:10.1039/b502848p

Katz, A., & Davis, M. E. (2000). Molecular imprinting of bulk, microporous silica. Nature, 403(6767), 286-289. doi:10.1038/35002032

Gianotti, E., Diaz, U., Coluccia, S., & Corma, A. (2011). Hybrid organic–inorganic catalytic mesoporous materials with proton sponges as building blocks. Physical Chemistry Chemical Physics, 13(24), 11702. doi:10.1039/c1cp20588a

Mokaya, R., & Jones, W. (1998). The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves. Journal of Materials Chemistry, 8(12), 2819-2826. doi:10.1039/a806049e

Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

Tanev, P. T., & Pinnavaia, T. J. (1995). A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 267(5199), 865-867. doi:10.1126/science.267.5199.865

Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F., & Stucky, G. D. (2000). Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials, 12(8), 2448-2459. doi:10.1021/cm0010304

Shylesh, S., Sharma, S., Mirajkar, S. ., & Singh, A. . (2004). Silica functionalised sulphonic acid groups: synthesis, characterization and catalytic activity in acetalization and acetylation reactions. Journal of Molecular Catalysis A: Chemical, 212(1-2), 219-228. doi:10.1016/j.molcata.2003.10.043

Woźniak, K. (1996). Proton sponges: solid-state NMR spectra of ionic complexes of 1,8-bis(dimethylamino)naphthalene. Journal of Molecular Structure, 374(1-3), 317-326. doi:10.1016/0022-2860(95)08947-0

Pozharskii, A. F. (1998). Naphthalene «proton sponges». Russian Chemical Reviews, 67(1), 1-24. doi:10.1070/rc1998v067n01abeh000377

Seo, Y.-K., Park, S.-B., & Ho Park, D. (2006). Mesoporous hybrid organosilica containing urethane moieties. Journal of Solid State Chemistry, 179(4), 1285-1288. doi:10.1016/j.jssc.2006.01.021

Van Rhijn, W. M., De Vos, D. E., Sels, B. F., & Bossaert, W. D. (1998). Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications, (3), 317-318. doi:10.1039/a707462j

Melero, J. A., van Grieken, R., & Morales, G. (2006). Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews, 106(9), 3790-3812. doi:10.1021/cr050994h

Kawahara, K., Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Stepwise silylation of double-four-ring (D4R) silicate into a novel spherical siloxane with a defined architecture. Journal of Materials Chemistry, 18(27), 3193. doi:10.1039/b807533f

Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3

CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027

Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-0

Sartori, G. (2004). Catalytic activity of aminopropyl xerogels in the selective synthesis of (E)-nitrostyrenes from nitroalkanes and aromatic aldehydes. Journal of Catalysis, 222(2), 410-418. doi:10.1016/j.jcat.2003.11.016

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

Hara, T., Kanai, S., Mori, K., Mizugaki, T., Ebitani, K., Jitsukawa, K., & Kaneda, K. (2006). Highly Efficient C−C Bond-Forming Reactions in Aqueous Media Catalyzed by Monomeric Vanadate Species in an Apatite Framework. The Journal of Organic Chemistry, 71(19), 7455-7462. doi:10.1021/jo0614745

Poe, S. L., Kobašlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476l

Motokura, K., Tada, M., & Iwasawa, Y. (2008). Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot CC Bond Forming Reactions. Angewandte Chemie International Edition, 47(48), 9230-9235. doi:10.1002/anie.200802515

Lubisch, W., Beckenbach, E., Bopp, S., Hofmann, H.-P., Kartal, A., Kästel, C., … Möller, A. (2003). Benzoylalanine-Derived Ketoamides Carrying Vinylbenzyl Amino Residues:  Discovery of Potent Water-Soluble Calpain Inhibitors with Oral Bioavailability. Journal of Medicinal Chemistry, 46(12), 2404-2412. doi:10.1021/jm0210717

Vlok, N., Malan, S. F., Castagnoli, N., Bergh, J. J., & Petzer, J. P. (2006). Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorganic & Medicinal Chemistry, 14(10), 3512-3521. doi:10.1016/j.bmc.2006.01.011

Selvam, C., Jachak, S. M., Thilagavathi, R., & Chakraborti, A. K. (2005). Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorganic & Medicinal Chemistry Letters, 15(7), 1793-1797. doi:10.1016/j.bmcl.2005.02.039

Nakayama, K., Ishida, Y., Ohtsuka, M., Kawato, H., Yoshida, K., Yokomizo, Y., … Watkins, W. J. (2003). MexAB-OprM-Specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: Discovery and early strategies for lead optimization. Bioorganic & Medicinal Chemistry Letters, 13(23), 4201-4204. doi:10.1016/j.bmcl.2003.07.024

Díaz, U., García, T., Velty, A., & Corma, A. (2012). Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers. Chemistry - A European Journal, 18(28), 8659-8672. doi:10.1002/chem.201200170

Schales, O., & Graefe, H. A. (1952). Arylnitroalkenes: A New Group of Antibacterial Agents1. Journal of the American Chemical Society, 74(18), 4486-4490. doi:10.1021/ja01138a004

Zee-Cheng, K.-Y., & Cheng, C.-C. (1969). Experimental tumor inhibitors. Antitumor activity of esters of .omega.-aryl-psi-nitro-psi-alken-1-ol and related compounds. Journal of Medicinal Chemistry, 12(1), 157-161. doi:10.1021/jm00301a042

Hruby, S. L., & Shanks, B. H. (2009). Acid–base cooperativity in condensation reactions with functionalized mesoporous silica catalysts. Journal of Catalysis, 263(1), 181-188. doi:10.1016/j.jcat.2009.02.011

Poli, E., Merino, E., Díaz, U., Brunel, D., & Corma, A. (2011). Different Routes for Preparing Mesoporous Organosilicas Containing the Tröger’s Base and Their Textural and Catalytic Implications. The Journal of Physical Chemistry C, 115(15), 7573-7585. doi:10.1021/jp2002854

Corma, A., Domine, M., Gaona, J. A., Jordá, J. L., Navarro, M. T., Rey, F., … Nemeth, L. T. (1998). Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chemical Communications, (20), 2211-2212. doi:10.1039/a806702c

Hoffmann, F., & Fröba, M. (2011). Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev., 40(2), 608-620. doi:10.1039/c0cs00076k

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem