Ulrich, L. E., Koonin, E. V., & Zhulin, I. B. (2005). One-component systems dominate signal transduction in prokaryotes. Trends in Microbiology, 13(2), 52-56. doi:10.1016/j.tim.2004.12.006
Kiel, C., Yus, E., & Serrano, L. (2010). Engineering Signal Transduction Pathways. Cell, 140(1), 33-47. doi:10.1016/j.cell.2009.12.028
Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545-554. doi:10.1038/nbt1208
[+]
Ulrich, L. E., Koonin, E. V., & Zhulin, I. B. (2005). One-component systems dominate signal transduction in prokaryotes. Trends in Microbiology, 13(2), 52-56. doi:10.1016/j.tim.2004.12.006
Kiel, C., Yus, E., & Serrano, L. (2010). Engineering Signal Transduction Pathways. Cell, 140(1), 33-47. doi:10.1016/j.cell.2009.12.028
Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545-554. doi:10.1038/nbt1208
Liang, J. C., Bloom, R. J., & Smolke, C. D. (2011). Engineering Biological Systems with Synthetic RNA Molecules. Molecular Cell, 43(6), 915-926. doi:10.1016/j.molcel.2011.08.023
Dueber, J. E. (2003). Reprogramming Control of an Allosteric Signaling Switch Through Modular Recombination. Science, 301(5641), 1904-1908. doi:10.1126/science.1085945
Sallee, N. A., Yeh, B. J., & Lim, W. A. (2007). Engineering Modular Protein Interaction Switches by Sequence Overlap. Journal of the American Chemical Society, 129(15), 4606-4611. doi:10.1021/ja0672728
Rodrigo, G., Landrain, T. E., Shen, S., & Jaramillo, A. (2013). A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends in Genetics, 29(9), 529-536. doi:10.1016/j.tig.2013.06.005
Callura, J. M., Dwyer, D. J., Isaacs, F. J., Cantor, C. R., & Collins, J. J. (2010). Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proceedings of the National Academy of Sciences, 107(36), 15898-15903. doi:10.1073/pnas.1009747107
Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855. doi:10.1073/pnas.1203808109
Werstuck, G. (1998). Controlling Gene Expression in Living Cells Through Small Molecule-RNA Interactions. Science, 282(5387), 296-298. doi:10.1126/science.282.5387.296
Wieland, M., & Hartig, J. S. (2008). Improved Aptazyme Design and In Vivo Screening Enable Riboswitching in Bacteria. Angewandte Chemie International Edition, 47(14), 2604-2607. doi:10.1002/anie.200703700
Win, M. N., & Smolke, C. D. (2007). A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences, 104(36), 14283-14288. doi:10.1073/pnas.0703961104
Klauser, B., & Hartig, J. S. (2013). An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Research, 41(10), 5542-5552. doi:10.1093/nar/gkt253
Bayer, T. S., & Smolke, C. D. (2005). Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337-343. doi:10.1038/nbt1069
Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168
Looger, L. L., Dwyer, M. A., Smith, J. J., & Hellinga, H. W. (2003). Computational design of receptor and sensor proteins with novel functions. Nature, 423(6936), 185-190. doi:10.1038/nature01556
Kortemme, T., & Baker, D. (2004). Computational design of protein–protein interactions. Current Opinion in Chemical Biology, 8(1), 91-97. doi:10.1016/j.cbpa.2003.12.008
Rodrigo, G., Landrain, T. E., & Jaramillo, A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences, 109(38), 15271-15276. doi:10.1073/pnas.1203831109
Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671
Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163
Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2005). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24(1), 79-88. doi:10.1038/nbt1172
Hersch, G. L., Baker, T. A., & Sauer, R. T. (2004). SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proceedings of the National Academy of Sciences, 101(33), 12136-12141. doi:10.1073/pnas.0404733101
Rodrigo, G., Kirov, B., Shen, S., & Jaramillo, A. (2013). Theoretical and experimental analysis of the forced LacI-AraC oscillator with a minimal gene regulatory model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(2), 025109. doi:10.1063/1.4809786
Danino, T., Mondragón-Palomino, O., Tsimring, L., & Hasty, J. (2010). A synchronized quorum of genetic clocks. Nature, 463(7279), 326-330. doi:10.1038/nature08753
Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700
Paige, J. S., Nguyen-Duc, T., Song, W., & Jaffrey, S. R. (2012). Fluorescence Imaging of Cellular Metabolites with RNA. Science, 335(6073), 1194-1194. doi:10.1126/science.1218298
Chen, X., & Ellington, A. D. (2009). Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes. PLoS Computational Biology, 5(12), e1000620. doi:10.1371/journal.pcbi.1000620
Quarta, G., Sin, K., & Schlick, T. (2012). Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function. PLoS Computational Biology, 8(2), e1002368. doi:10.1371/journal.pcbi.1002368
Freeman, J. B., & Dale, R. (2012). Assessing bimodality to detect the presence of a dual cognitive process. Behavior Research Methods, 45(1), 83-97. doi:10.3758/s13428-012-0225-x
Wieland, M., Benz, A., Klauser, B., & Hartig, J. S. (2009). Artificial Ribozyme Switches Containing Natural Riboswitch Aptamer Domains. Angewandte Chemie International Edition, 48(15), 2715-2718. doi:10.1002/anie.200805311
Penchovsky, R., & Breaker, R. R. (2005). Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnology, 23(11), 1424-1433. doi:10.1038/nbt1155
Chushak, Y., & Stone, M. O. (2009). In silico selection of RNA aptamers. Nucleic Acids Research, 37(12), e87-e87. doi:10.1093/nar/gkp408
Bartel, D., & Szostak, J. (1993). Isolation of new ribozymes from a large pool of random sequences [see comment]. Science, 261(5127), 1411-1418. doi:10.1126/science.7690155
Lutz, R. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research, 25(6), 1203-1210. doi:10.1093/nar/25.6.1203
Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B., & Arkin, A. P. (2012). Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 8(5), 447-454. doi:10.1038/nchembio.919
Bennett, M. R., & Hasty, J. (2009). Microfluidic devices for measuring gene network dynamics in single cells. Nature Reviews Genetics, 10(9), 628-638. doi:10.1038/nrg2625
Cookson, N. A., Mather, W. H., Danino, T., Mondragón‐Palomino, O., Williams, R. J., Tsimring, L. S., & Hasty, J. (2011). Queueing up for enzymatic processing: correlated signaling through coupled degradation. Molecular Systems Biology, 7(1), 561. doi:10.1038/msb.2011.94
Hermann, T. (2000). Adaptive Recognition by Nucleic Acid Aptamers. Science, 287(5454), 820-825. doi:10.1126/science.287.5454.820
Lou, C., Stanton, B., Chen, Y.-J., Munsky, B., & Voigt, C. A. (2012). Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology, 30(11), 1137-1142. doi:10.1038/nbt.2401
Qi, L., Haurwitz, R. E., Shao, W., Doudna, J. A., & Arkin, A. P. (2012). RNA processing enables predictable programming of gene expression. Nature Biotechnology, 30(10), 1002-1006. doi:10.1038/nbt.2355
Liu, C. C., Qi, L., Lucks, J. B., Segall-Shapiro, T. H., Wang, D., Mutalik, V. K., & Arkin, A. P. (2012). An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nature Methods, 9(11), 1088-1094. doi:10.1038/nmeth.2184
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 152(5), 1173-1183. doi:10.1016/j.cell.2013.02.022
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., … Qi, L. S. (2013). CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 154(2), 442-451. doi:10.1016/j.cell.2013.06.044
Bashor, C. J., Horwitz, A. A., Peisajovich, S. G., & Lim, W. A. (2010). Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems. Annual Review of Biophysics, 39(1), 515-537. doi:10.1146/annurev.biophys.050708.133652
Yen, L., Svendsen, J., Lee, J.-S., Gray, J. T., Magnier, M., Baba, T., … Mulligan, R. C. (2004). Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature, 431(7007), 471-476. doi:10.1038/nature02844
[-]