- -

Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

Show simple item record

Files in this item

dc.contributor.author Shen, Shensi es_ES
dc.contributor.author Rodrigo Tarrega, Guillermo es_ES
dc.contributor.author Prakash, Satya es_ES
dc.contributor.author Majer, Eszter es_ES
dc.contributor.author Landrain, T.E. es_ES
dc.contributor.author Kirov, Boris es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.contributor.author Jaramillo, Alfonso es_ES
dc.date.accessioned 2016-06-20T12:23:55Z
dc.date.available 2016-06-20T12:23:55Z
dc.date.issued 2015-05-26
dc.identifier.issn 0305-1048
dc.identifier.uri http://hdl.handle.net/10251/66174
dc.description.abstract [EN] Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits. es_ES
dc.description.sponsorship EVOPROG [FP7-ICT-610730]; PROMYS [FP7-KBBE-613745 to A.J.]; Ministerio de Economia y Competitividad, Spain [BIO2011-26741 to J.-A.D.]; PRES Paris Sud grant (S.S.); EMBO long-term fellowship co-funded by Marie Curie actions [ALTF-1177-2011 A.J., G.R.]; AXA research fund; Ministerio de Educacion, Cultura y Deporte, Spain [AP2012-3751 to E.M.]. Funding for open access charge: EVOPROG [FP7-ICT-610730]; PROMYS [FP7-KBBE-613745]. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation MINECO/BIO2011-26741 es_ES
dc.relation EU/ALTF-1177-2011 es_ES
dc.relation info:eu-repo/grantAgreement/MECD//AP2012-3751/ES/AP2012-3751/ es_ES
dc.relation.ispartof Nucleic Acids Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject RNA es_ES
dc.subject Synthetic biology es_ES
dc.subject Computational design es_ES
dc.subject Automated design es_ES
dc.subject Living cells es_ES
dc.subject Riboregulators es_ES
dc.subject Platform es_ES
dc.subject Systems es_ES
dc.subject Protein es_ES
dc.subject Transduction es_ES
dc.subject Degradation es_ES
dc.title Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/nar/gkv287
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610730/EU/General-Purpose Programmable Evolution Machine on a Chip/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/613745/EU/Programming synthetic networks for bio-based production of value chemicals/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Shen, S.; Rodrigo Tarrega, G.; Prakash, S.; Majer, E.; Landrain, T.; Kirov, B.; Daros Arnau, JA.... (2015). Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression. Nucleic Acids Research. 43(10):5158-5170. https://doi.org/10.1093/nar/gkv287 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1093/nar/gkv287 es_ES
dc.description.upvformatpinicio 5158 es_ES
dc.description.upvformatpfin 5170 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 306054 es_ES
dc.identifier.eissn 1362-4962
dc.identifier.pmid 25916845 en_EN
dc.identifier.pmcid PMC4446421 en_EN
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Ministerio de Educación, Cultura y Deporte
dc.description.references Ulrich, L. E., Koonin, E. V., & Zhulin, I. B. (2005). One-component systems dominate signal transduction in prokaryotes. Trends in Microbiology, 13(2), 52-56. doi:10.1016/j.tim.2004.12.006 es_ES
dc.description.references Kiel, C., Yus, E., & Serrano, L. (2010). Engineering Signal Transduction Pathways. Cell, 140(1), 33-47. doi:10.1016/j.cell.2009.12.028 es_ES
dc.description.references Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545-554. doi:10.1038/nbt1208 es_ES
dc.description.references Liang, J. C., Bloom, R. J., & Smolke, C. D. (2011). Engineering Biological Systems with Synthetic RNA Molecules. Molecular Cell, 43(6), 915-926. doi:10.1016/j.molcel.2011.08.023 es_ES
dc.description.references Dueber, J. E. (2003). Reprogramming Control of an Allosteric Signaling Switch Through Modular Recombination. Science, 301(5641), 1904-1908. doi:10.1126/science.1085945 es_ES
dc.description.references Sallee, N. A., Yeh, B. J., & Lim, W. A. (2007). Engineering Modular Protein Interaction Switches by Sequence Overlap. Journal of the American Chemical Society, 129(15), 4606-4611. doi:10.1021/ja0672728 es_ES
dc.description.references Rodrigo, G., Landrain, T. E., Shen, S., & Jaramillo, A. (2013). A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends in Genetics, 29(9), 529-536. doi:10.1016/j.tig.2013.06.005 es_ES
dc.description.references Callura, J. M., Dwyer, D. J., Isaacs, F. J., Cantor, C. R., & Collins, J. J. (2010). Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proceedings of the National Academy of Sciences, 107(36), 15898-15903. doi:10.1073/pnas.1009747107 es_ES
dc.description.references Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855. doi:10.1073/pnas.1203808109 es_ES
dc.description.references Werstuck, G. (1998). Controlling Gene Expression in Living Cells Through Small Molecule-RNA Interactions. Science, 282(5387), 296-298. doi:10.1126/science.282.5387.296 es_ES
dc.description.references Wieland, M., & Hartig, J. S. (2008). Improved Aptazyme Design and In Vivo Screening Enable Riboswitching in Bacteria. Angewandte Chemie International Edition, 47(14), 2604-2607. doi:10.1002/anie.200703700 es_ES
dc.description.references Win, M. N., & Smolke, C. D. (2007). A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences, 104(36), 14283-14288. doi:10.1073/pnas.0703961104 es_ES
dc.description.references Klauser, B., & Hartig, J. S. (2013). An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Research, 41(10), 5542-5552. doi:10.1093/nar/gkt253 es_ES
dc.description.references Bayer, T. S., & Smolke, C. D. (2005). Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337-343. doi:10.1038/nbt1069 es_ES
dc.description.references Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168 es_ES
dc.description.references Looger, L. L., Dwyer, M. A., Smith, J. J., & Hellinga, H. W. (2003). Computational design of receptor and sensor proteins with novel functions. Nature, 423(6936), 185-190. doi:10.1038/nature01556 es_ES
dc.description.references Kortemme, T., & Baker, D. (2004). Computational design of protein–protein interactions. Current Opinion in Chemical Biology, 8(1), 91-97. doi:10.1016/j.cbpa.2003.12.008 es_ES
dc.description.references Rodrigo, G., Landrain, T. E., & Jaramillo, A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences, 109(38), 15271-15276. doi:10.1073/pnas.1203831109 es_ES
dc.description.references Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163 es_ES
dc.description.references Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2005). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24(1), 79-88. doi:10.1038/nbt1172 es_ES
dc.description.references Hersch, G. L., Baker, T. A., & Sauer, R. T. (2004). SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proceedings of the National Academy of Sciences, 101(33), 12136-12141. doi:10.1073/pnas.0404733101 es_ES
dc.description.references Rodrigo, G., Kirov, B., Shen, S., & Jaramillo, A. (2013). Theoretical and experimental analysis of the forced LacI-AraC oscillator with a minimal gene regulatory model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(2), 025109. doi:10.1063/1.4809786 es_ES
dc.description.references Danino, T., Mondragón-Palomino, O., Tsimring, L., & Hasty, J. (2010). A synchronized quorum of genetic clocks. Nature, 463(7279), 326-330. doi:10.1038/nature08753 es_ES
dc.description.references Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700 es_ES
dc.description.references Paige, J. S., Nguyen-Duc, T., Song, W., & Jaffrey, S. R. (2012). Fluorescence Imaging of Cellular Metabolites with RNA. Science, 335(6073), 1194-1194. doi:10.1126/science.1218298 es_ES
dc.description.references Chen, X., & Ellington, A. D. (2009). Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes. PLoS Computational Biology, 5(12), e1000620. doi:10.1371/journal.pcbi.1000620 es_ES
dc.description.references Quarta, G., Sin, K., & Schlick, T. (2012). Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function. PLoS Computational Biology, 8(2), e1002368. doi:10.1371/journal.pcbi.1002368 es_ES
dc.description.references Freeman, J. B., & Dale, R. (2012). Assessing bimodality to detect the presence of a dual cognitive process. Behavior Research Methods, 45(1), 83-97. doi:10.3758/s13428-012-0225-x es_ES
dc.description.references Wieland, M., Benz, A., Klauser, B., & Hartig, J. S. (2009). Artificial Ribozyme Switches Containing Natural Riboswitch Aptamer Domains. Angewandte Chemie International Edition, 48(15), 2715-2718. doi:10.1002/anie.200805311 es_ES
dc.description.references Penchovsky, R., & Breaker, R. R. (2005). Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnology, 23(11), 1424-1433. doi:10.1038/nbt1155 es_ES
dc.description.references Chushak, Y., & Stone, M. O. (2009). In silico selection of RNA aptamers. Nucleic Acids Research, 37(12), e87-e87. doi:10.1093/nar/gkp408 es_ES
dc.description.references Bartel, D., & Szostak, J. (1993). Isolation of new ribozymes from a large pool of random sequences [see comment]. Science, 261(5127), 1411-1418. doi:10.1126/science.7690155 es_ES
dc.description.references Lutz, R. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research, 25(6), 1203-1210. doi:10.1093/nar/25.6.1203 es_ES
dc.description.references Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B., & Arkin, A. P. (2012). Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 8(5), 447-454. doi:10.1038/nchembio.919 es_ES
dc.description.references Bennett, M. R., & Hasty, J. (2009). Microfluidic devices for measuring gene network dynamics in single cells. Nature Reviews Genetics, 10(9), 628-638. doi:10.1038/nrg2625 es_ES
dc.description.references Cookson, N. A., Mather, W. H., Danino, T., Mondragón‐Palomino, O., Williams, R. J., Tsimring, L. S., & Hasty, J. (2011). Queueing up for enzymatic processing: correlated signaling through coupled degradation. Molecular Systems Biology, 7(1), 561. doi:10.1038/msb.2011.94 es_ES
dc.description.references Hermann, T. (2000). Adaptive Recognition by Nucleic Acid Aptamers. Science, 287(5454), 820-825. doi:10.1126/science.287.5454.820 es_ES
dc.description.references Lou, C., Stanton, B., Chen, Y.-J., Munsky, B., & Voigt, C. A. (2012). Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology, 30(11), 1137-1142. doi:10.1038/nbt.2401 es_ES
dc.description.references Qi, L., Haurwitz, R. E., Shao, W., Doudna, J. A., & Arkin, A. P. (2012). RNA processing enables predictable programming of gene expression. Nature Biotechnology, 30(10), 1002-1006. doi:10.1038/nbt.2355 es_ES
dc.description.references Liu, C. C., Qi, L., Lucks, J. B., Segall-Shapiro, T. H., Wang, D., Mutalik, V. K., & Arkin, A. P. (2012). An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nature Methods, 9(11), 1088-1094. doi:10.1038/nmeth.2184 es_ES
dc.description.references Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 152(5), 1173-1183. doi:10.1016/j.cell.2013.02.022 es_ES
dc.description.references Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., … Qi, L. S. (2013). CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 154(2), 442-451. doi:10.1016/j.cell.2013.06.044 es_ES
dc.description.references Bashor, C. J., Horwitz, A. A., Peisajovich, S. G., & Lim, W. A. (2010). Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems. Annual Review of Biophysics, 39(1), 515-537. doi:10.1146/annurev.biophys.050708.133652 es_ES
dc.description.references Yen, L., Svendsen, J., Lee, J.-S., Gray, J. T., Magnier, M., Baba, T., … Mulligan, R. C. (2004). Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature, 431(7007), 471-476. doi:10.1038/nature02844 es_ES


This item appears in the following Collection(s)

Show simple item record