- -

Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate

Mostrar el registro completo del ítem

Hernández Crespo, C.; Oliver Rajadel, N.; Bixquert, J.; Gargallo Bellés, S.; Martín Monerris, M. (2015). Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia. 774(1):183-192. doi:10.1007/s10750-015-2493-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66231

Ficheros en el ítem

Metadatos del ítem

Título: Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate
Autor: Hernández Crespo, Carmen Oliver Rajadel, Nuria Bixquert, J. Gargallo Bellés, Sara Martín Monerris, Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
The goal of this study is to examine the suitability of three plants, Typha spp., Phragmites spp. and Iris pseudacorus, in a free-water surface constructed wetland created to treat eutrophic water from Lake Albufera ...[+]
Palabras clave: Lake Albufera , Tancat de la Pipa , Eutrophic water , Plants , Multiple harvest
Derechos de uso: Reserva de todos los derechos
Fuente:
Hydrobiologia. (issn: 0018-8158 )
DOI: 10.1007/s10750-015-2493-9
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s10750-015-2493-9
Descripción: The final publication is available at Springer via http://dx.doi.org/10.1007/s10750-015-2493-9
Tipo: Artículo

References

Álvarez, J. A. & E. Bécares, 2006. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecological Engineering 28: 99–105.

Arroyo, P., I. Blanco, R. Cortijo, E. L. Calabuig & G. Ansola, 2013. Twelve-Year performance of a constructed wetland for municipal wastewater treatment: water quality improvement, metal distribution in wastewater, sediments, and vegetation. Water, Air and Soil Pollution 224: 1762.

Asaeda, T., L. H. Nam, P. Hietz, N. Tanaka & S. Karunaratnex, 2002. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquatic Botany 73: 223–229. [+]
Álvarez, J. A. & E. Bécares, 2006. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecological Engineering 28: 99–105.

Arroyo, P., I. Blanco, R. Cortijo, E. L. Calabuig & G. Ansola, 2013. Twelve-Year performance of a constructed wetland for municipal wastewater treatment: water quality improvement, metal distribution in wastewater, sediments, and vegetation. Water, Air and Soil Pollution 224: 1762.

Asaeda, T., L. H. Nam, P. Hietz, N. Tanaka & S. Karunaratnex, 2002. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquatic Botany 73: 223–229.

Březinova, T. & J. Vymazal, 2015. Nitrogen standing stock in Phragmites australis growing in constructed wetlands – Do we evaluate it correctly? Ecological Engineering 74: 286–289.

Brix, H., 1999. The European research project on reed die-back and progression (EUREED). Limnologica 29: 5–10.

Cheng, X. Y., W. Y. Chen, B. H. Gu, X. C. Liu, F. Chen, Z. H. Chen, X. Y. Zhou, Y. X. Li, H. Huang & Y. J. Chen, 2009. Morphology, ecology, and contaminant removal efficiency of eight wetland plants with different root systems. Hydrobiologia 623: 77–85.

Ciria, M. P., M. L. Solano & P. Soriano, 2005. Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering 92: 535–544.

Comín, F. A., J. A. Romero, O. Hernández & M. Menéndez, 2001. Restoration of wetlands from abandoned rice fields for nutrient removal, and biological community and landscape diversity. Restoration Ecology 9: 201–208.

Coveney, M. F., D. L. Stites, E. F. Lowe, L. E. Battoe & R. Conrow, 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering 19: 141–159.

De Meester, S., J. Demeyer, F. Velghe, A. Peene, H. Van Langenhove & J. Dewulf, 2012. The environmental sustainability of anaerobic digestion as a biomass valorization technology. Bioresource Technology 121: 396–403.

Dunne, E. J., M. F. Coveney, E. R. Marzolf, V. R. Hoge, R. Conrow, R. Naleway, E. F. Lowe & L. E. Battoe, 2012. Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from Lake Apopka, Florida. Ecological Engineering 42: 90–100.

Fisher, J., C. J. Stratford & S. Buckton, 2009. Variation in nutrient removal in three wetland blocks in relation to vegetation composition, inflow nutrient concentration and hydraulic loading. Ecological Engineering 35: 1387–1394.

Gigante, D., C. Angiolini, F. Landucci, F. Maneli, B. Nisi, O. Vaselli, R. Venanzoni & L. Lastrucci, 2014. New occurrence of reed bed decline in southern Europe: do permanent flooding and chemical parameters play a role? Comptes Rendus Biologies 337: 487–498.

Li, L., Y. Li, D. K. Biswas, Y. Nian & G. Jiang, 2008. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Tecnology 99: 1656–1663.

Li, X. N., H. L. Song, W. Li, X. W. Lu & O. Nishimura, 2010. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering 36: 382–390.

Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.

Maddison, M., T. Mauring, K. Remm, M. Lesta & Ü. Mander, 2009. Dynamics of Typha latifolia L. populations in treatment wetlands in Estonia. Ecological Engineering 35: 258–269.

Ministerio de Agricultura, Pesca y Alimentación (MAPA). 1986. Métodos oficiales de análisis, vol. 3. Mundi-Prensa, Madrid.

Martín, M., N. Oliver, C. Hernández-Crespo, S. Gargallo & M. C. Regidor, 2013. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecological Engineering 50: 52–61.

Menéndez, M., M. Martínez, O. Hernández & F. Comín, 2001. Comparison of leaf decomposition in two mediterranean rivers: a large eutrophic river and an oligotrophic stream (S Catalonia, NE Spain). International Review of Hydrobiology 86: 475–486.

Mitsch, W. J., 1995. Restoration of our lakes and rivers with wetlands – an important application of ecological engineering. Water Science and Technology 31: 167–177.

Qiu, Z. C., M. Wang, W. L. Lai, F. H. He & Z. H. Chen, 2011. Plant growth and nutrient removal in constructed monoculture and mixed wetlands related to stubble attributes. Hydrobiologia 661: 251–260.

Rodrigo, M. A., M. Martín, C. Rojo, S. Gargallo, M. Segura & N. Oliver, 2013. The role of eutrophication reduction of two small man-made Mediterranean lagoons in the context of a broader remediation system: effects on water quality and plankton contribution. Ecological Engineering 61: 371–382.

Sheng-Bing, H., Y. Li, K. Hai-Nan, L. Zhi-Ming, W. De-Yi & H. Zhan-Bo, 2007. Treatment efficiencies of constructed wetlands for eutrophic landscape river water. Pedosphere 17: 522–528.

Suzuki, T., N. Ariyawathie & Y. Kurihara, 1989. Amplification of Total Dry Matter, Nitrogen and Phosphorus Removal from Stands of Phragmites Australis by Harvesting and Reharvesting Regenerated Shoots. In Hammer, D. A. (ed.), Constructed Wetlands for Wastewater Treatment. Lewis Publishers, Chelsea, MI: 530–535.

Tang, X., S. Huang, M. Scholz & J. Li, 2009. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water Air Soil Pollution 197: 61–73.

Tanner, C. C., 1996. Plants for constructed wetland treatment systems – a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering 7: 59–83.

Vera, P. & M. Giménez, 2013. Colonización y evolución inicial de la comunidad de paseriformes en un humedal restaurado del Este de la península ibérica. Revista de anillamiento 31–32: 61–72.

Vymazal, J., 2011. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674: 133–156.

Vymazal, J., 2013. Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering 61: 582–592.

Vymazal, J. & L. Kröpfelová, 2005. Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czesch Republic. Ecological Engineering 25: 606–621.

Vymazal, J., L. Kröpfelová, J. Švehla & J. Štíchová, 2010. Can multiple harvest of aboveground biomass enhance removal of trace elements in constructed wetlands receiving municipal swage? Ecological Engineering 36: 939–945.

Wright, R. M. & J. A. McDonnell, 1986. Macrophyte growth in shallow streams: biomass model. Journal of Environmental Engineering 112: 967–982.

Xie, Y., D. Yu & B. Ren, 2004. Effects of nitrogen and phosphorus availability on the decomposition of aquatic plants. Aquatic Botany 80: 29–37.

Zhang, C. B., J. Wang, W. L. Liu, S. X. Zhu, H. L. Ge, S. X. Chang, J. Chang & Y. Ge, 2010. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering 36: 62–68.

Zhao, Y., X. Xia & Z. Yang, 2013. Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake. Journal of Environmental Sciences 25: 16–25.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem