- -

Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández Crespo, Carmen es_ES
dc.contributor.author Oliver Rajadel, Nuria es_ES
dc.contributor.author Bixquert, J. es_ES
dc.contributor.author Gargallo Bellés, Sara es_ES
dc.contributor.author Martín Monerris, Miguel es_ES
dc.date.accessioned 2016-06-21T08:05:01Z
dc.date.available 2016-06-21T08:05:01Z
dc.date.issued 2015-10
dc.identifier.issn 0018-8158
dc.identifier.uri http://hdl.handle.net/10251/66231
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10750-015-2493-9 es_ES
dc.description.abstract The goal of this study is to examine the suitability of three plants, Typha spp., Phragmites spp. and Iris pseudacorus, in a free-water surface constructed wetland created to treat eutrophic water from Lake Albufera (Valencia, Spain), a wetland of international importance. The growth, coverage and nutrient content of the three plants were studied, and chemical analyses were performed according to standard methods. The maximum standing crops measured for each plant were 1.9, 18.2 and 3.3 kg m(-2), respectively, and their average nutrient concentrations were 2.1, 1.2 and 1.7 g P kg(-1) and 12.1, 11.7 and 10.1 g N kg(-1), respectively. A multiple harvest of Iris pseudacorus revealed that the removal of nutrients could be increased up to 50% for N and 100% for P compared with a single harvest. Biomass decomposition assays showed high values for five-day biochemical oxygen demand (115-207 mg O-2 g(-1), depending on the plant and its age) and a substantial release of phosphorus, up to 100% of that contained in the biomass, highlighting the need to remove the litter fall. This study provides key aspects for vegetation selection and management (planting and harvesting) in a novel application of constructed wetlands to enhance water quality and biodiversity. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Hydrobiologia es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lake Albufera es_ES
dc.subject Tancat de la Pipa es_ES
dc.subject Eutrophic water es_ES
dc.subject Plants es_ES
dc.subject Multiple harvest es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10750-015-2493-9
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Hernández Crespo, C.; Oliver Rajadel, N.; Bixquert, J.; Gargallo Bellés, S.; Martín Monerris, M. (2015). Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia. 774(1):183-192. doi:10.1007/s10750-015-2493-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10750-015-2493-9 es_ES
dc.description.upvformatpinicio 183 es_ES
dc.description.upvformatpfin 192 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 774 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 306110 es_ES
dc.description.references Álvarez, J. A. & E. Bécares, 2006. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecological Engineering 28: 99–105. es_ES
dc.description.references Arroyo, P., I. Blanco, R. Cortijo, E. L. Calabuig & G. Ansola, 2013. Twelve-Year performance of a constructed wetland for municipal wastewater treatment: water quality improvement, metal distribution in wastewater, sediments, and vegetation. Water, Air and Soil Pollution 224: 1762. es_ES
dc.description.references Asaeda, T., L. H. Nam, P. Hietz, N. Tanaka & S. Karunaratnex, 2002. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquatic Botany 73: 223–229. es_ES
dc.description.references Březinova, T. & J. Vymazal, 2015. Nitrogen standing stock in Phragmites australis growing in constructed wetlands – Do we evaluate it correctly? Ecological Engineering 74: 286–289. es_ES
dc.description.references Brix, H., 1999. The European research project on reed die-back and progression (EUREED). Limnologica 29: 5–10. es_ES
dc.description.references Cheng, X. Y., W. Y. Chen, B. H. Gu, X. C. Liu, F. Chen, Z. H. Chen, X. Y. Zhou, Y. X. Li, H. Huang & Y. J. Chen, 2009. Morphology, ecology, and contaminant removal efficiency of eight wetland plants with different root systems. Hydrobiologia 623: 77–85. es_ES
dc.description.references Ciria, M. P., M. L. Solano & P. Soriano, 2005. Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering 92: 535–544. es_ES
dc.description.references Comín, F. A., J. A. Romero, O. Hernández & M. Menéndez, 2001. Restoration of wetlands from abandoned rice fields for nutrient removal, and biological community and landscape diversity. Restoration Ecology 9: 201–208. es_ES
dc.description.references Coveney, M. F., D. L. Stites, E. F. Lowe, L. E. Battoe & R. Conrow, 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering 19: 141–159. es_ES
dc.description.references De Meester, S., J. Demeyer, F. Velghe, A. Peene, H. Van Langenhove & J. Dewulf, 2012. The environmental sustainability of anaerobic digestion as a biomass valorization technology. Bioresource Technology 121: 396–403. es_ES
dc.description.references Dunne, E. J., M. F. Coveney, E. R. Marzolf, V. R. Hoge, R. Conrow, R. Naleway, E. F. Lowe & L. E. Battoe, 2012. Efficacy of a large-scale constructed wetland to remove phosphorus and suspended solids from Lake Apopka, Florida. Ecological Engineering 42: 90–100. es_ES
dc.description.references Fisher, J., C. J. Stratford & S. Buckton, 2009. Variation in nutrient removal in three wetland blocks in relation to vegetation composition, inflow nutrient concentration and hydraulic loading. Ecological Engineering 35: 1387–1394. es_ES
dc.description.references Gigante, D., C. Angiolini, F. Landucci, F. Maneli, B. Nisi, O. Vaselli, R. Venanzoni & L. Lastrucci, 2014. New occurrence of reed bed decline in southern Europe: do permanent flooding and chemical parameters play a role? Comptes Rendus Biologies 337: 487–498. es_ES
dc.description.references Li, L., Y. Li, D. K. Biswas, Y. Nian & G. Jiang, 2008. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Tecnology 99: 1656–1663. es_ES
dc.description.references Li, X. N., H. L. Song, W. Li, X. W. Lu & O. Nishimura, 2010. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering 36: 382–390. es_ES
dc.description.references Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310. es_ES
dc.description.references Maddison, M., T. Mauring, K. Remm, M. Lesta & Ü. Mander, 2009. Dynamics of Typha latifolia L. populations in treatment wetlands in Estonia. Ecological Engineering 35: 258–269. es_ES
dc.description.references Ministerio de Agricultura, Pesca y Alimentación (MAPA). 1986. Métodos oficiales de análisis, vol. 3. Mundi-Prensa, Madrid. es_ES
dc.description.references Martín, M., N. Oliver, C. Hernández-Crespo, S. Gargallo & M. C. Regidor, 2013. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecological Engineering 50: 52–61. es_ES
dc.description.references Menéndez, M., M. Martínez, O. Hernández & F. Comín, 2001. Comparison of leaf decomposition in two mediterranean rivers: a large eutrophic river and an oligotrophic stream (S Catalonia, NE Spain). International Review of Hydrobiology 86: 475–486. es_ES
dc.description.references Mitsch, W. J., 1995. Restoration of our lakes and rivers with wetlands – an important application of ecological engineering. Water Science and Technology 31: 167–177. es_ES
dc.description.references Qiu, Z. C., M. Wang, W. L. Lai, F. H. He & Z. H. Chen, 2011. Plant growth and nutrient removal in constructed monoculture and mixed wetlands related to stubble attributes. Hydrobiologia 661: 251–260. es_ES
dc.description.references Rodrigo, M. A., M. Martín, C. Rojo, S. Gargallo, M. Segura & N. Oliver, 2013. The role of eutrophication reduction of two small man-made Mediterranean lagoons in the context of a broader remediation system: effects on water quality and plankton contribution. Ecological Engineering 61: 371–382. es_ES
dc.description.references Sheng-Bing, H., Y. Li, K. Hai-Nan, L. Zhi-Ming, W. De-Yi & H. Zhan-Bo, 2007. Treatment efficiencies of constructed wetlands for eutrophic landscape river water. Pedosphere 17: 522–528. es_ES
dc.description.references Suzuki, T., N. Ariyawathie & Y. Kurihara, 1989. Amplification of Total Dry Matter, Nitrogen and Phosphorus Removal from Stands of Phragmites Australis by Harvesting and Reharvesting Regenerated Shoots. In Hammer, D. A. (ed.), Constructed Wetlands for Wastewater Treatment. Lewis Publishers, Chelsea, MI: 530–535. es_ES
dc.description.references Tang, X., S. Huang, M. Scholz & J. Li, 2009. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water Air Soil Pollution 197: 61–73. es_ES
dc.description.references Tanner, C. C., 1996. Plants for constructed wetland treatment systems – a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering 7: 59–83. es_ES
dc.description.references Vera, P. & M. Giménez, 2013. Colonización y evolución inicial de la comunidad de paseriformes en un humedal restaurado del Este de la península ibérica. Revista de anillamiento 31–32: 61–72. es_ES
dc.description.references Vymazal, J., 2011. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674: 133–156. es_ES
dc.description.references Vymazal, J., 2013. Emergent plants used in free water surface constructed wetlands: a review. Ecological Engineering 61: 582–592. es_ES
dc.description.references Vymazal, J. & L. Kröpfelová, 2005. Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czesch Republic. Ecological Engineering 25: 606–621. es_ES
dc.description.references Vymazal, J., L. Kröpfelová, J. Švehla & J. Štíchová, 2010. Can multiple harvest of aboveground biomass enhance removal of trace elements in constructed wetlands receiving municipal swage? Ecological Engineering 36: 939–945. es_ES
dc.description.references Wright, R. M. & J. A. McDonnell, 1986. Macrophyte growth in shallow streams: biomass model. Journal of Environmental Engineering 112: 967–982. es_ES
dc.description.references Xie, Y., D. Yu & B. Ren, 2004. Effects of nitrogen and phosphorus availability on the decomposition of aquatic plants. Aquatic Botany 80: 29–37. es_ES
dc.description.references Zhang, C. B., J. Wang, W. L. Liu, S. X. Zhu, H. L. Ge, S. X. Chang, J. Chang & Y. Ge, 2010. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecological Engineering 36: 62–68. es_ES
dc.description.references Zhao, Y., X. Xia & Z. Yang, 2013. Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake. Journal of Environmental Sciences 25: 16–25. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem