- -

Behavior of fixed and critical points of the (alpha,c)-family of iterative methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Behavior of fixed and critical points of the (alpha,c)-family of iterative methods

Show full item record

Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; P. Vindel (2015). Behavior of fixed and critical points of the (alpha,c)-family of iterative methods. Journal of Mathematical Chemistry. 53(3):807-827. https://doi.org/10.1007/s10910-014-0465-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66291

Files in this item

Item Metadata

Title: Behavior of fixed and critical points of the (alpha,c)-family of iterative methods
Author: Campos, B. Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón P. Vindel
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
In this paper we study the dynamical behavior of the -family of iterative methods for solving nonlinear equations, when we apply the fixed point operator associated to this family on quadratic polynomials. This is a family ...[+]
Subjects: Nonlinear equations , Iterative methods , Dynamics of rational functions , Parameter planes
Copyrigths: Reserva de todos los derechos
Source:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-014-0465-3
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10910-014-0465-3
Conference name: 14th International Conference of Computational and Mathematical Methods in Science and Engineering (CMMSE)
Conference place: Rota, Spain
Conference date: JUL 03-07, 2014
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/
info:eu-repo/grantAgreement/UJI//P1·1B2011-30/
info:eu-repo/grantAgreement/UPV//SP20120474/
Thanks:
Supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. The first and fourth authors were also partially supported by P11B2011-30 (Universitat Jaume I), the second and third authors were also partially supported ...[+]
Type: Artículo Comunicación en congreso

References

A.F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, vol. 132 (Springer, New York, 1991)

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Study of a bi-parametric family of iterative methods, Abstra. Appl. Anal. (2014). doi: 10.1155/2014/141643

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Bifurcations of the roots of a 6-degree symmetric polynomial coming from the fixed point operator of a class of iterative methods. in Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, ed. by J. Vigo-Aguiar (2014), pp. 253–264 [+]
A.F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, vol. 132 (Springer, New York, 1991)

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Study of a bi-parametric family of iterative methods, Abstra. Appl. Anal. (2014). doi: 10.1155/2014/141643

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Bifurcations of the roots of a 6-degree symmetric polynomial coming from the fixed point operator of a class of iterative methods. in Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, ed. by J. Vigo-Aguiar (2014), pp. 253–264

B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of the family of c-iterative methods. Int. J. Compt. Math. (2014). doi: 10.1080/00207160.2014.893608

F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. (2013). doi: 10.1155/2013/780153

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013)

C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49(7), 1384–1415 (2011)

P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: formalism and first applications to atomic problems. J. Math. Chem. 22, 107–116 (1997)

M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction-diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013)

K. Maleknejad, M. Alizadeh, An efficient numerical sheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011)

J. Milnor, Dynamics in One Complex Variable (Princeton University Press, New Jersey, 2006)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record