- -

Behavior of fixed and critical points of the (alpha,c)-family of iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Behavior of fixed and critical points of the (alpha,c)-family of iterative methods

Mostrar el registro completo del ítem

Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; P. Vindel (2015). Behavior of fixed and critical points of the (alpha,c)-family of iterative methods. Journal of Mathematical Chemistry. 53(3):807-827. https://doi.org/10.1007/s10910-014-0465-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66291

Ficheros en el ítem

Metadatos del ítem

Título: Behavior of fixed and critical points of the (alpha,c)-family of iterative methods
Autor: Campos, B. Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón P. Vindel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this paper we study the dynamical behavior of the -family of iterative methods for solving nonlinear equations, when we apply the fixed point operator associated to this family on quadratic polynomials. This is a family ...[+]
Palabras clave: Nonlinear equations , Iterative methods , Dynamics of rational functions , Parameter planes
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-014-0465-3
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s10910-014-0465-3
Título del congreso: 14th International Conference of Computational and Mathematical Methods in Science and Engineering (CMMSE)
Lugar del congreso: Rota, Spain
Fecha congreso: JUL 03-07, 2014
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/
info:eu-repo/grantAgreement/UJI//P1·1B2011-30/
info:eu-repo/grantAgreement/UPV//SP20120474/
Agradecimientos:
Supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. The first and fourth authors were also partially supported by P11B2011-30 (Universitat Jaume I), the second and third authors were also partially supported ...[+]
Tipo: Artículo Comunicación en congreso

References

A.F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, vol. 132 (Springer, New York, 1991)

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Study of a bi-parametric family of iterative methods, Abstra. Appl. Anal. (2014). doi: 10.1155/2014/141643

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Bifurcations of the roots of a 6-degree symmetric polynomial coming from the fixed point operator of a class of iterative methods. in Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, ed. by J. Vigo-Aguiar (2014), pp. 253–264 [+]
A.F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, vol. 132 (Springer, New York, 1991)

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Study of a bi-parametric family of iterative methods, Abstra. Appl. Anal. (2014). doi: 10.1155/2014/141643

B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Bifurcations of the roots of a 6-degree symmetric polynomial coming from the fixed point operator of a class of iterative methods. in Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, ed. by J. Vigo-Aguiar (2014), pp. 253–264

B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of the family of c-iterative methods. Int. J. Compt. Math. (2014). doi: 10.1080/00207160.2014.893608

F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. (2013). doi: 10.1155/2013/780153

A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013)

C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49(7), 1384–1415 (2011)

P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: formalism and first applications to atomic problems. J. Math. Chem. 22, 107–116 (1997)

M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction-diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013)

K. Maleknejad, M. Alizadeh, An efficient numerical sheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011)

J. Milnor, Dynamics in One Complex Variable (Princeton University Press, New Jersey, 2006)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem