- -

Behavior of fixed and critical points of the (alpha,c)-family of iterative methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Behavior of fixed and critical points of the (alpha,c)-family of iterative methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, B. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author P. Vindel es_ES
dc.date.accessioned 2016-06-22T07:36:37Z
dc.date.available 2016-06-22T07:36:37Z
dc.date.issued 2015-03
dc.identifier.issn 0259-9791
dc.identifier.uri http://hdl.handle.net/10251/66291
dc.description.abstract In this paper we study the dynamical behavior of the -family of iterative methods for solving nonlinear equations, when we apply the fixed point operator associated to this family on quadratic polynomials. This is a family of third-order iterative root-finding methods depending on two parameters; so, as we show throughout this paper, its dynamics is really interesting, but complicated. In fact, we have found in the real -plane a line in which the corresponding elements of the family have a lower number of free critical points. As this number is directly related with the quantity of basins of attraction, it is probable to find more stable behavior between the elements of the family in this region. es_ES
dc.description.sponsorship Supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. The first and fourth authors were also partially supported by P11B2011-30 (Universitat Jaume I), the second and third authors were also partially supported by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia SP20120474. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Iterative methods es_ES
dc.subject Dynamics of rational functions es_ES
dc.subject Parameter planes es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Behavior of fixed and critical points of the (alpha,c)-family of iterative methods es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/s10910-014-0465-3
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1·1B2011-30/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120474/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; P. Vindel (2015). Behavior of fixed and critical points of the (alpha,c)-family of iterative methods. Journal of Mathematical Chemistry. 53(3):807-827. https://doi.org/10.1007/s10910-014-0465-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 14th International Conference of Computational and Mathematical Methods in Science and Engineering (CMMSE) es_ES
dc.relation.conferencedate JUL 03-07, 2014 es_ES
dc.relation.conferenceplace Rota, Spain es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10910-014-0465-3 es_ES
dc.description.upvformatpinicio 807 es_ES
dc.description.upvformatpfin 827 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 296756 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.description.references A.F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, vol. 132 (Springer, New York, 1991) es_ES
dc.description.references B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Study of a bi-parametric family of iterative methods, Abstra. Appl. Anal. (2014). doi: 10.1155/2014/141643 es_ES
dc.description.references B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Bifurcations of the roots of a 6-degree symmetric polynomial coming from the fixed point operator of a class of iterative methods. in Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, ed. by J. Vigo-Aguiar (2014), pp. 253–264 es_ES
dc.description.references B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of the family of c-iterative methods. Int. J. Compt. Math. (2014). doi: 10.1080/00207160.2014.893608 es_ES
dc.description.references F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. (2013). doi: 10.1155/2013/780153 es_ES
dc.description.references A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013) es_ES
dc.description.references C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49(7), 1384–1415 (2011) es_ES
dc.description.references P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: formalism and first applications to atomic problems. J. Math. Chem. 22, 107–116 (1997) es_ES
dc.description.references M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction-diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013) es_ES
dc.description.references K. Maleknejad, M. Alizadeh, An efficient numerical sheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011) es_ES
dc.description.references J. Milnor, Dynamics in One Complex Variable (Princeton University Press, New Jersey, 2006) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem