Mostrar el registro sencillo del ítem
dc.contributor.author | Campos, B. | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | P. Vindel | es_ES |
dc.date.accessioned | 2016-06-22T07:36:37Z | |
dc.date.available | 2016-06-22T07:36:37Z | |
dc.date.issued | 2015-03 | |
dc.identifier.issn | 0259-9791 | |
dc.identifier.uri | http://hdl.handle.net/10251/66291 | |
dc.description.abstract | In this paper we study the dynamical behavior of the -family of iterative methods for solving nonlinear equations, when we apply the fixed point operator associated to this family on quadratic polynomials. This is a family of third-order iterative root-finding methods depending on two parameters; so, as we show throughout this paper, its dynamics is really interesting, but complicated. In fact, we have found in the real -plane a line in which the corresponding elements of the family have a lower number of free critical points. As this number is directly related with the quantity of basins of attraction, it is probable to find more stable behavior between the elements of the family in this region. | es_ES |
dc.description.sponsorship | Supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02. The first and fourth authors were also partially supported by P11B2011-30 (Universitat Jaume I), the second and third authors were also partially supported by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia SP20120474. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Dynamics of rational functions | es_ES |
dc.subject | Parameter planes | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Behavior of fixed and critical points of the (alpha,c)-family of iterative methods | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/s10910-014-0465-3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1·1B2011-30/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120474/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; P. Vindel (2015). Behavior of fixed and critical points of the (alpha,c)-family of iterative methods. Journal of Mathematical Chemistry. 53(3):807-827. https://doi.org/10.1007/s10910-014-0465-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 14th International Conference of Computational and Mathematical Methods in Science and Engineering (CMMSE) | es_ES |
dc.relation.conferencedate | JUL 03-07, 2014 | es_ES |
dc.relation.conferenceplace | Rota, Spain | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10910-014-0465-3 | es_ES |
dc.description.upvformatpinicio | 807 | es_ES |
dc.description.upvformatpfin | 827 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 296756 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.description.references | A.F. Beardon, Iteration of Rational Functions, Graduate Texts in Mathematics, vol. 132 (Springer, New York, 1991) | es_ES |
dc.description.references | B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Study of a bi-parametric family of iterative methods, Abstra. Appl. Anal. (2014). doi: 10.1155/2014/141643 | es_ES |
dc.description.references | B. Campos, A. Cordero, A. Magreñan, J.R. Torregrosa, P. Vindel, Bifurcations of the roots of a 6-degree symmetric polynomial coming from the fixed point operator of a class of iterative methods. in Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, ed. by J. Vigo-Aguiar (2014), pp. 253–264 | es_ES |
dc.description.references | B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of the family of c-iterative methods. Int. J. Compt. Math. (2014). doi: 10.1080/00207160.2014.893608 | es_ES |
dc.description.references | F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. (2013). doi: 10.1155/2013/780153 | es_ES |
dc.description.references | A. Cordero, J. García-Maimó, J.R. Torregrosa, M.P. Vassileva, P. Vindel, Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013) | es_ES |
dc.description.references | C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49(7), 1384–1415 (2011) | es_ES |
dc.description.references | P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: formalism and first applications to atomic problems. J. Math. Chem. 22, 107–116 (1997) | es_ES |
dc.description.references | M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction-diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013) | es_ES |
dc.description.references | K. Maleknejad, M. Alizadeh, An efficient numerical sheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011) | es_ES |
dc.description.references | J. Milnor, Dynamics in One Complex Variable (Princeton University Press, New Jersey, 2006) | es_ES |