- -

An efficient two-parametric family with memory for nonlinear equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An efficient two-parametric family with memory for nonlinear equations

Show full item record

Cordero Barbero, A.; Lotfi, T.; Bakhtiari, P.; Torregrosa Sánchez, JR. (2015). An efficient two-parametric family with memory for nonlinear equations. Numerical Algorithms. 68(2):323-335. doi:10.1007/s11075-014-9846-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66350

Files in this item

Item Metadata

Title: An efficient two-parametric family with memory for nonlinear equations
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
A new two-parametric family of derivative-free iterative methods for solving nonlinear equations is presented. First, a new biparametric family without memory of optimal order four is proposed. The improvement of the ...[+]
Subjects: Multipoint iterative method , Nonlinear equation , Optimal order , Method with memory , Kung-Traub's conjecture
Copyrigths: Reserva de todos los derechos
Source:
Numerical Algorithms. (issn: 1017-1398 )
DOI: 10.1007/s11075-014-9846-8
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s11075-014-9846-8
Thanks:
The second author wishes to thank the Islamic Azad University, Hamedan Branch, where the paper was written as a part of the research plan, for financial support.
Type: Artículo

References

Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)

Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equation. J. Comput. Appl. Math. 252, 95–102 (2013)

Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11508 (2012) [+]
Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974)

Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equation. J. Comput. Appl. Math. 252, 95–102 (2013)

Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11508 (2012)

Džunić, J.: On efficient two-parameter methods for solving nonlinear equations. Numer. Algorithms. 63(3), 549–569 (2013)

Džunić, J., Petković, M.S.: On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 236, 2909–2920 (2012)

Petković, M.S., Neta, B., Petković, L.D., Džunić, J. (ed.).: Multipoint methods for solving nonlinear equations. Elsevier (2013)

Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)

Soleymani, F., Shateyi, S.: Two optimal eighth-order derivative-free classes of iterative methods. Abstr. Appl. Anal. 2012(318165), 14 (2012). doi: 10.1155/2012/318165

Soleymani, F., Sharma, R., Li, X., Tohidi, E.: An optimized derivative-free form of the Potra-Pták methods. Math. Comput. Model. 56, 97–104 (2012)

Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011(693787), 12 (2011). doi: 10.5402/2011/693787

Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)

Wang, X., Džunić, J., Zhang, T.: On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl. Math. Comput. 219, 1749–1760 (2012)

Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)

Ortega, J.M., Rheinboldt, W.G. (ed.).: Iterative Solutions of Nonlinear Equations in Several Variables, Ed. Academic Press, New York (1970)

Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)

Blanchard, P.: Complex Analytic Dynamics on the Riemann Sphere. Bull. AMS 11(1), 85–141 (1984)

Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. arXiv: 1307.6705 [math.NA]

[-]

This item appears in the following Collection(s)

Show full item record