Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Lotfi, T. | es_ES |
dc.contributor.author | Bakhtiari, P. | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2016-06-23T06:37:50Z | |
dc.date.available | 2016-06-23T06:37:50Z | |
dc.date.issued | 2015-02 | |
dc.identifier.issn | 1017-1398 | |
dc.identifier.uri | http://hdl.handle.net/10251/66350 | |
dc.description.abstract | A new two-parametric family of derivative-free iterative methods for solving nonlinear equations is presented. First, a new biparametric family without memory of optimal order four is proposed. The improvement of the convergence rate of this family is obtained by using two self-accelerating parameters. These varying parameters are calculated in each iterative step employing only information from the current and the previous iteration. The corresponding R-order is 7 and the efficiency index 7(1/3) = 1.913. Numerical examples and comparison with some existing derivative-free optimal eighth-order schemes are included to confirm the theoretical results. In addition, the dynamical behavior of the designed method is analyzed and shows the stability of the scheme. | es_ES |
dc.description.sponsorship | The second author wishes to thank the Islamic Azad University, Hamedan Branch, where the paper was written as a part of the research plan, for financial support. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Numerical Algorithms | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multipoint iterative method | es_ES |
dc.subject | Nonlinear equation | es_ES |
dc.subject | Optimal order | es_ES |
dc.subject | Method with memory | es_ES |
dc.subject | Kung-Traub's conjecture | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An efficient two-parametric family with memory for nonlinear equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11075-014-9846-8 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Lotfi, T.; Bakhtiari, P.; Torregrosa Sánchez, JR. (2015). An efficient two-parametric family with memory for nonlinear equations. Numerical Algorithms. 68(2):323-335. doi:10.1007/s11075-014-9846-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11075-014-9846-8 | es_ES |
dc.description.upvformatpinicio | 323 | es_ES |
dc.description.upvformatpfin | 335 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 68 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 296758 | es_ES |
dc.contributor.funder | Islamic Azad University, Hamedan | es_ES |
dc.description.references | Kung, H.T., Traub, J.F.: Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Math. 21, 643–651 (1974) | es_ES |
dc.description.references | Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equation. J. Comput. Appl. Math. 252, 95–102 (2013) | es_ES |
dc.description.references | Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218, 11496–11508 (2012) | es_ES |
dc.description.references | Džunić, J.: On efficient two-parameter methods for solving nonlinear equations. Numer. Algorithms. 63(3), 549–569 (2013) | es_ES |
dc.description.references | Džunić, J., Petković, M.S.: On generalized multipoint root-solvers with memory. J. Comput. Appl. Math. 236, 2909–2920 (2012) | es_ES |
dc.description.references | Petković, M.S., Neta, B., Petković, L.D., Džunić, J. (ed.).: Multipoint methods for solving nonlinear equations. Elsevier (2013) | es_ES |
dc.description.references | Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010) | es_ES |
dc.description.references | Soleymani, F., Shateyi, S.: Two optimal eighth-order derivative-free classes of iterative methods. Abstr. Appl. Anal. 2012(318165), 14 (2012). doi: 10.1155/2012/318165 | es_ES |
dc.description.references | Soleymani, F., Sharma, R., Li, X., Tohidi, E.: An optimized derivative-free form of the Potra-Pták methods. Math. Comput. Model. 56, 97–104 (2012) | es_ES |
dc.description.references | Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. 2011(693787), 12 (2011). doi: 10.5402/2011/693787 | es_ES |
dc.description.references | Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964) | es_ES |
dc.description.references | Wang, X., Džunić, J., Zhang, T.: On an efficient family of derivative free three-point methods for solving nonlinear equations. Appl. Math. Comput. 219, 1749–1760 (2012) | es_ES |
dc.description.references | Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011) | es_ES |
dc.description.references | Ortega, J.M., Rheinboldt, W.G. (ed.).: Iterative Solutions of Nonlinear Equations in Several Variables, Ed. Academic Press, New York (1970) | es_ES |
dc.description.references | Jay, I.O.: A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) | es_ES |
dc.description.references | Blanchard, P.: Complex Analytic Dynamics on the Riemann Sphere. Bull. AMS 11(1), 85–141 (1984) | es_ES |
dc.description.references | Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. arXiv: 1307.6705 [math.NA] | es_ES |