- -

Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernandez, Rafael es_ES
dc.contributor.author Grirrane, Abdessamad es_ES
dc.contributor.author Resa, Irene es_ES
dc.contributor.author Rodriguez, Amor es_ES
dc.contributor.author Carmona, Ernesto es_ES
dc.contributor.author Alvarez, Eleuterio es_ES
dc.contributor.author Gutierrez-Puebla, Enrique es_ES
dc.contributor.author Monge, Angeles es_ES
dc.contributor.author Lopez del Amo, Juan Miguel es_ES
dc.contributor.author Limbach, Hans-Heinrich es_ES
dc.contributor.author Lledos, Agusti es_ES
dc.contributor.author Maseras, Feliu es_ES
dc.contributor.author del Rio, Diego es_ES
dc.date.accessioned 2016-06-24T10:00:12Z
dc.date.available 2016-06-24T10:00:12Z
dc.date.issued 2009
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/66421
dc.description.abstract [EN] New zincocenes [ZnCp'2] (2-5) with substituted cyclopentadienyl ligands C(5)Me(4)H, C(5)Me(4)tBu, C(5)Me(4)SiMe(2)tBu and C(5)Me(4)SiMe(3), respectively, have been prepared by the reaction of ZnCl(2) with the appropriate Cp'-transfer reagent. For a comparative structural study, the known [Zn(C(5)H(4)SiMe(3))(2)] (1), has also been investigated, along with the mixed-ring zincocenes [Zn(C(5)Me(5))(C(5)Me(4)SiMe(3))] (6) and [Zn(C(5)Me(5))(C(5)H(4)SiMe(3))] (7), the last two obtained by conproportionation of [Zn(C(5)Me(5))(2)] with 5 or 1, as appropriate. All new compounds were characterised by NMR spectroscopy, and by X-ray methods, with the exception of 7, which yields a side-product (C) upon attempted crystallisation. Compounds 5 and 6 were also investigated by (13)C CPMAS NMR spectroscopy. Zincocenes 1 and 2 have infinite chain structures with bridging Cp' ligands, while 3 and 4 exhibit slipped-sandwich geometries. Compounds 5 and 6 have rigid, eta(5)/eta(1)(sigma) structures, in which the monohapto C(5)Me(4)SiMe(3) ligand is bound to zinc through the silyl-bearing carbon atom. forming a Zn-C bond of comparable strength to the Zn-Me bond in ZnMe(2). Zincocene 5 has dynamic behaviour in solution, but a rigid structure in the solid state, as revealed by (13)C CPMAS NMR Studies, whereas for 6 the different nature of the Cp' ligands and of the ring substituents of the eta(1)-Cp' group (Me and SiMe(3)) have permitted observation for the first time of the rigid eta(5)/eta(1) solution structure. Iminoacyl compounds of composition [Zn(eta(5)-C(5)Me(4)R)(eta(1)-C(NXyl)C(5)Me(4)R)] resulting from the reactions of sonic of the above zincocenes and CNXyl (Xyl=2,6-dimethylphenylisocyanide) have also been obtained and characterised. es_ES
dc.description.sponsorship Financial support front the Spanish Ministerio de Educacion y Ciencia (MEC) (project CTQ2007-62814 and Consolider-Ingenio 2010 CSD2007-00006) and the Junta Lie Andalucia (project FQM672) is gratefully acknowledged (FEDER support). I.R. thanks the Ministry of Education for a research grant. DA.R.J. thanks the sixth framework program of the E.U.. for a MC fellowship. A.R. and R.F. thank the MEC/Universidad de Sevilla fora Ramon y Cajal contract.
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Density functional calculations es_ES
dc.subject Iminoacyl es_ES
dc.subject Metallocenes es_ES
dc.subject Structure elucidation es_ES
dc.subject Zinc es_ES
dc.title Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.200801917
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2007-62814/ES/ENTIDADES ORGANOMETALICAS DE UTILIDAD EN PROCESOS DE ACTIVACION DE ENLACES C-H, EN SINTESIS QUIMICA Y EN EL DESARROLLO DE NUEVAS TERAPIAS ANTITUMORALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00006/ES/Desarrollo de entidades organometálicas para reacciones de funcionalización selectiva en moléculas orgánicas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//FQM672/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Fernandez, R.; Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E.; Alvarez, E.; Gutierrez-Puebla, E.... (2009). Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings. Chemistry - A European Journal. 15(4):924-935. https://doi.org/10.1002/chem.200801917 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.200801917 es_ES
dc.description.upvformatpinicio 924 es_ES
dc.description.upvformatpfin 935 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 213031 es_ES
dc.identifier.pmid 19065696
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder Junta de Andalucía
dc.description.references KEALY, T. J., & PAUSON, P. L. (1951). A New Type of Organo-Iron Compound. Nature, 168(4285), 1039-1040. doi:10.1038/1681039b0 es_ES
dc.description.references Miller, S. A., Tebboth, J. A., & Tremaine, J. F. (1952). 114. Dicyclopentadienyliron. Journal of the Chemical Society (Resumed), 632. doi:10.1039/jr9520000632 es_ES
dc.description.references Fischer, E. O., & Pfab, W. (1952). Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Zeitschrift für Naturforschung B, 7(7), 377-379. doi:10.1515/znb-1952-0701 es_ES
dc.description.references Wilkinson, G., Rosenblum, M., Whiting, M. C., & Woodward, R. B. (1952). THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL. Journal of the American Chemical Society, 74(8), 2125-2126. doi:10.1021/ja01128a527 es_ES
dc.description.references Wilkinson, G. (1952). The Preparation and Some Properties of Ruthenocene and Ruthenicinium Salts. Journal of the American Chemical Society, 74(23), 6146-6147. doi:10.1021/ja01143a538 es_ES
dc.description.references Hanusa, T. P. (2002). New Developments in the Cyclopentadienyl Chemistry of the Alkaline-Earth Metals. Organometallics, 21(13), 2559-2571. doi:10.1021/om020168o es_ES
dc.description.references Jutzi, P., & Burford, N. (1999). Structurally Diverse π-Cyclopentadienyl Complexes of the Main Group Elements. Chemical Reviews, 99(4), 969-990. doi:10.1021/cr941099t es_ES
dc.description.references Stalke, D. (1994). Das Lithocen-Anion und „offenes” Calcocen — neue Anstöße in der Chemie der Alkali- und Erdalkalimetallocene. Angewandte Chemie, 106(21), 2256-2259. doi:10.1002/ange.19941062107 es_ES
dc.description.references Stalke, D. (1994). The Lithocene Anion and«Open» Calcocene–New Impulses in the Chemistry of Alkali and Alkaline Earth Metallocenes. Angewandte Chemie International Edition in English, 33(21), 2168-2171. doi:10.1002/anie.199421681 es_ES
dc.description.references Rayón, V. M., & Frenking, G. (2002). Structures, Bond Energies, Heats of Formation, and Quantitative Bonding Analysis of Main-Group Metallocenes [E(Cp)2] (E=Be–Ba, Zn, Si–Pb) and [E(Cp)] (E=Li–Cs, B–Tl). Chemistry - A European Journal, 8(20), 4693-4707. doi:10.1002/1521-3765(20021018)8:20<4693::aid-chem4693>3.0.co;2-b es_ES
dc.description.references Budzelaar, P. H. M., Engelberts, J. J., & van Lenthe, J. H. (2003). Trends in Cyclopentadienyl−Main-Group-Metal Bonding†. Organometallics, 22(8), 1562-1576. doi:10.1021/om020928v es_ES
dc.description.references Evans, W. J. (2007). The Importance of Questioning Scientific Assumptions:  Some Lessons from f Element Chemistry†. Inorganic Chemistry, 46(9), 3435-3449. doi:10.1021/ic062011k es_ES
dc.description.references Evans, W. J. (2002). The expansion of divalent organolanthanide reduction chemistry via new molecular divalent complexes and sterically induced reduction reactivity of trivalent complexes. Journal of Organometallic Chemistry, 647(1-2), 2-11. doi:10.1016/s0022-328x(01)01462-0 es_ES
dc.description.references Evans, W. J. (2002). Recent advances in f element reduction chemistry. Journal of Organometallic Chemistry, 652(1-2), 61-68. doi:10.1016/s0022-328x(02)01308-6 es_ES
dc.description.references Evans, W. J., & Davis, B. L. (2002). Chemistry of Tris(pentamethylcyclopentadienyl) f-Element Complexes, (C5Me5)3M. Chemical Reviews, 102(6), 2119-2136. doi:10.1021/cr010298r es_ES
dc.description.references Werkema, E. L., Maron, L., Eisenstein, O., & Andersen, R. A. (2007). Reactions of Monomeric [1,2,4-(Me3C)3C5H2]2CeH and CO with or without H2:  An Experimental and Computational Study. Journal of the American Chemical Society, 129(9), 2529-2541. doi:10.1021/ja066482h es_ES
dc.description.references Walter, M. D., Berg, D. J., & Andersen, R. A. (2007). Coordination of 1,4-Diazabutadiene Ligands to Decamethylytterbocene:  Additional Examples of Spin Coupling in Ytterbocene Complexes. Organometallics, 26(9), 2296-2307. doi:10.1021/om0610142 es_ES
dc.description.references Barros, N., Maynau, D., Maron, L., Eisenstein, O., Zi, G., & Andersen, R. A. (2007). Single but Stronger UO, Double but Weaker UNMe Bonds:  The Tale Told by Cp2UO and Cp2UNR. Organometallics, 26(20), 5059-5065. doi:10.1021/om700628e es_ES
dc.description.references Janiak, C., & Schumann, H. (1991). Bulky or Supracyclopentadienyl Derivatives in Organometallic Chemistry. Advances in Organometallic Chemistry, 291-393. doi:10.1016/s0065-3055(08)60698-x es_ES
dc.description.references Hays, M. L., & Hanusa, T. P. (1996). Substituent Effects as Probes of Structure and Bonding in Mononuclear Metallocenes. Advances in Organometallic Chemistry, 117-170. doi:10.1016/s0065-3055(08)60533-x es_ES
dc.description.references Dyker, G., Heiermann, J., Miura, M., Inoh, J.-I., Pivsa-Art, S., Satoh, T., & Nomura, M. (2000). Palladium-Catalyzed Arylation of Cyclopentadienes. Chemistry - A European Journal, 6(18), 3426-3433. doi:10.1002/1521-3765(20000915)6:18<3426::aid-chem3426>3.0.co;2-b es_ES
dc.description.references Ruspic, C., Moss, J. R., Schürmann, M., & Harder, S. (2008). Remarkable Stability of Metallocenes with Superbulky Ligands: Spontaneous Reduction of SmIII to SmII. Angewandte Chemie, 120(11), 2151-2156. doi:10.1002/ange.200705001 es_ES
dc.description.references Ruspic, C., Moss, J. R., Schürmann, M., & Harder, S. (2008). Remarkable Stability of Metallocenes with Superbulky Ligands: Spontaneous Reduction of SmIII to SmII. Angewandte Chemie International Edition, 47(11), 2121-2126. doi:10.1002/anie.200705001 es_ES
dc.description.references Giesbrecht, G. R., Gordon, J. C., Clark, D. L., & Scott, B. L. (2003). Synthesis, structure and solution dynamics of lithium salts of superbulky cyclopentadienyl ligands. Dalton Transactions, (13), 2658. doi:10.1039/b302258g es_ES
dc.description.references Grirrane, A., Resa, I., Rodriguez, A., Carmona, E., Alvarez, E., Gutierrez-Puebla, E., … Andersen, R. A. (2007). Zinc−Zinc Bonded Zincocene Structures. Synthesis and Characterization of Zn2(η5-C5Me5)2and Zn2(η5-C5Me4Et)2. Journal of the American Chemical Society, 129(3), 693-703. doi:10.1021/ja0668217 es_ES
dc.description.references Resa, I. (2004). Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond. Science, 305(5687), 1136-1138. doi:10.1126/science.1101356 es_ES
dc.description.references Budzelaar, P. H. M., Boersma, J., van der Kerk, G. J. M., Spek, A. L., & Duisenberg, A. J. M. (1985). The structure of dicyclopentadienylzinc. Journal of Organometallic Chemistry, 281(2-3), 123-130. doi:10.1016/0022-328x(85)87100-x es_ES
dc.description.references Haaland, A., Samdal, S., Tverdova, N. V., Girichev, G. V., Giricheva, N. I., Shlykov, S. A., … Lokshin, B. V. (2003). The molecular structure of dicyclopentadienylzinc (zincocene) determined by gas electron diffraction and density functional theory calculations: η5,η5, η3,η3 or η5,η1 coordination of the ligand rings? Journal of Organometallic Chemistry, 684(1-2), 351-358. doi:10.1016/s0022-328x(03)00770-8 es_ES
dc.description.references Del Mar Conejo, M., Fernández, R., del Río, D., Carmona, E., Monge, A., Ruiz, C., … Fernández Sanz, J. (2003). Synthesis, Solid-State Structure, and Bonding Analysis of the Beryllocenes[Be(C5Me4H)2],[Be(C5Me5)2], and[Be(C5Me5)(C5Me4H)]. Chemistry - A European Journal, 9(18), 4452-4461. doi:10.1002/chem.200304876 es_ES
dc.description.references Wong, C. H., Lee, T. Y., Chao, K. J., & Lee, S. (1972). Crystal structure of bis(cyclopentadienyl)beryllium at –120°C. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(6), 1662-1665. doi:10.1107/s0567740872004820 es_ES
dc.description.references Wong, C., Lee, T. Y., Lee, T. J., Chang, T. W., & Liu, C. S. (1973). Novel structure of beryllocene. Inorganic and Nuclear Chemistry Letters, 9(6), 667-673. doi:10.1016/0020-1650(73)80175-8 es_ES
dc.description.references Nugent, K., Beattie, J., Hambley, T., & Snow, M. (1984). A precise low-temperature crystal structure of Bis(cyclopentadienyl)beryllium. Australian Journal of Chemistry, 37(8), 1601. doi:10.1071/ch9841601 es_ES
dc.description.references Blom, R., Boersma, J., Budzelaar, P. H. M., Fischer, B., Haaland, A., Volden, H. V., … Zingaro, R. A. (1986). The Preparation of Bis(pentamethylcyclopentadienyl)zinc and Bis(trimethylsilylcyclopentadienyl)zinc, and their Molecular Structures Determined by Gas Electron Diffraction. Acta Chemica Scandinavica, 40a, 113-120. doi:10.3891/acta.chem.scand.40a-0113 es_ES
dc.description.references Fischer, B., Wijkens, P., Boersma, J., van Koten, G., Smeets, W. J. J., Spek, A. L., & Budzelaar, P. H. M. (1989). The unusual solid state structures of the pentasubstituted bis(cyclopentadienyl)zinc compounds bis(pentamethylcyclopentadienyl)zinc and bis(tetramethylphenylcyclopentadienyl)zinc. Journal of Organometallic Chemistry, 376(2-3), 223-233. doi:10.1016/0022-328x(89)85132-0 es_ES
dc.description.references Burkey, D. J., & Hanusa, T. P. (1996). Effects of steric strain on the bonding in zinc metallocenes: the structure of [(C3H7)4C5H]2Zn. Journal of Organometallic Chemistry, 512(1-2), 165-173. doi:10.1016/0022-328x(95)05952-l es_ES
dc.description.references Ly, H. V., Forster, T. D., Parvez, M., McDonald, R., & Roesler, R. (2007). Zinc, Cadmium, and Mercury Metallocenes Incorporating 1,2-Diaza-3,5-diborolyl Ligands. Organometallics, 26(14), 3516-3523. doi:10.1021/om070230n es_ES
dc.description.references Ly, H. V., Forster, T. D., Maley, D., Parvez, M., & Roesler, R. (2005). µ-η3:η4-Lithiocene and η3:η3-zincocene incorporating 1,2-diaza-3,5-diborolyl, a cyclopentadienyl analog. Chemical Communications, (35), 4468. doi:10.1039/b508152a es_ES
dc.description.references Wang, H., Kehr, G., Fröhlich, R., & Erker, G. (2007). Ein 1,8-Naphthylen-verbrücktes Bis(indenyl)zink-THF-Addukt: Synthese und Struktur eines Ansa-Zinkocen-Derivates. Angewandte Chemie, 119(26), 4992-4995. doi:10.1002/ange.200605069 es_ES
dc.description.references Wang, H., Kehr, G., Fröhlich, R., & Erker, G. (2007). A 1,8-Naphthylene-Bridged Bis(indenyl)zinc THF Adduct: Formation and Structure of an ansa-Zincocene Derivative. Angewandte Chemie International Edition, 46(26), 4905-4908. doi:10.1002/anie.200605069 es_ES
dc.description.references Fernández, R., Resa, I., del Río, D., Carmona, E., Gutiérrez-Puebla, E., & Monge, Á. (2003). Synthesis and Solid-State Structure of Zn(η5-C5Me4SiMe3)(η1-C5Me4SiMe3), a Zincocene with Nonparallel Cyclopentadienyl Rings. Organometallics, 22(3), 381-383. doi:10.1021/om021018g es_ES
dc.description.references Schumann, H., Gottfriedsen, J., Glanz, M., Dechert, S., & Demtschuk, J. (2001). Metallocenes of the alkaline earth metals and their carbene complexes. Journal of Organometallic Chemistry, 617-618, 588-600. doi:10.1016/s0022-328x(00)00684-7 es_ES
dc.description.references Smith, M. E., & Andersen, R. A. (1996). Me5C5Ni(acac):  A Monomeric, Paramagnetic, 18-Electron, Spin-Equilibrium Molecule. Journal of the American Chemical Society, 118(45), 11119-11128. doi:10.1021/ja953873f es_ES
dc.description.references Shapiro, P. J., Vij, A., Yap, G. P. A., & Rheingold, A. L. (1995). The double insertion of t-butyl isocyanide by tris(tetramethylcyclopentadienyl) aluminum to form. Polyhedron, 14(1), 203-209. doi:10.1016/0277-5387(94)00354-h es_ES
dc.description.references Robbins, J. L., Edelstein, N., Spencer, B., & Smart, J. C. (1982). Syntheses and electronic structures of decamethylmetallocenes. Journal of the American Chemical Society, 104(7), 1882-1893. doi:10.1021/ja00371a017 es_ES
dc.description.references Nugent, K. W., Beattie, J. K., & Field, L. D. (1989). Molecular inversion dynamics of bis(cyclopentadienyl)beryllium inferred from partially relaxed spin-spin coupling between carbon-13 and beryllium-9. The Journal of Physical Chemistry, 93(14), 5371-5377. doi:10.1021/j100351a014 es_ES
dc.description.references Margl, P., Schwarz, K., & Blöchl, P. E. (1995). Dynamics of beryllocene. The Journal of Chemical Physics, 103(2), 683-690. doi:10.1063/1.470102 es_ES
dc.description.references Hung, I., Macdonald, C. L. B., & Schurko, R. W. (2004). Structure and Dynamics of Homoleptic Beryllocenes: A Solid-State9Be and13C NMR Study. Chemistry - A European Journal, 10(23), 5923-5935. doi:10.1002/chem.200400404 es_ES
dc.description.references Lopez del Amo, J. M., Buntkowsky, G., Limbach, H.-H., Resa, I., Fernández, R., & Carmona, E. (2008). Low-Temperature NMR Studies of Zn Tautomerism and Hindered Rotations in Solid Zincocene Derivatives. The Journal of Physical Chemistry A, 112(16), 3557-3565. doi:10.1021/jp711504g es_ES
dc.description.references Manriquez, J. M., & Bercaw, J. E. (1974). Preparation of a dinitrogen complex of bis(pentamethylcyclopentadienyl)zirconium(II). Isolation and protonation leading to stoichiometric reduction of dinitrogen to hydrazine. Journal of the American Chemical Society, 96(19), 6229-6230. doi:10.1021/ja00826a071 es_ES
dc.description.references Pool, J. A., Lobkovsky, E., & Chirik, P. J. (2004). Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature, 427(6974), 527-530. doi:10.1038/nature02274 es_ES
dc.description.references Beattie, J. K., & Nugent, K. W. (1992). Beryllocene and related slip-sandwich structures. Inorganica Chimica Acta, 198-200, 309-318. doi:10.1016/s0020-1693(00)92373-9 es_ES
dc.description.references Macdonald, C. L. B., Gorden, J. D., Voigt, A., Filipponi, S., & Cowley, A. H. (2008). Group 13 decamethylmetallocenium cations. Dalton Trans., (9), 1161-1176. doi:10.1039/b716220k es_ES
dc.description.references Hitchcock, P. B., Keates, J. M., & Lawless, G. A. (1998). Mercurycyclopentadienyl Derivatives Are Not Always Fluxional. Journal of the American Chemical Society, 120(3), 599-600. doi:10.1021/ja972093z es_ES
dc.description.references Grirrane, A., Resa, I., del Río, D., Rodríguez, A., Álvarez, E., Mereiter, K., & Carmona, E. (2007). Solid-State Structures and Solution Studies of Novel Cyclopentadienyl Mercury Compounds. Inorganic Chemistry, 46(11), 4667-4676. doi:10.1021/ic0624672 es_ES
dc.description.references Ustynyuk, Y. A., Kisin, A. V., Pribytkova, L. M., Zenkin, A. A., & Antonova, N. D. (1972). Nuclear magnetic resonance spectroscopy of metal cyclopentadienyls X. Proton magnetic resonance spectra of, and dynamic behaviour in, bis(trimethylsilyl)cyclopentadiene. Journal of Organometallic Chemistry, 42(1), 47-63. doi:10.1016/s0022-328x(00)81832-x es_ES
dc.description.references Jutzi, P. (1986). Fluxional .eta.1-cyclopentadienyl compounds of main-group elements. Chemical Reviews, 86(6), 983-996. doi:10.1021/cr00076a002 es_ES
dc.description.references Pinkas, J., Kubišta, J., Gyepes, R., Čejka, J., Meunier, P., & Mach, K. (2005). Non-degenerate 1,2-silyl shift in silyl substituted alkyltrimethylcyclopentadienes. Journal of Organometallic Chemistry, 690(3), 731-741. doi:10.1016/j.jorganchem.2004.09.081 es_ES
dc.description.references Nyulászi, L., & Schleyer, P. von R. (1999). Hyperconjugative π-Aromaticity:  How To Make Cyclopentadiene Aromatic. Journal of the American Chemical Society, 121(29), 6872-6875. doi:10.1021/ja983113f es_ES
dc.description.references Almenningen, A., Helgaker, T. U., Haaland, A., Samdal, S., Bastiansen, O., Braathen, G., … Cyvin, S. J. (1982). The Molecular Structures of Dimethyl-, Diethyl- and Dipropylzinc Determined by Gas Phase Electron Diffraction. Normal Coordinate Analysis and ab initio Molecular Orbital Calculations on Dimethylzinc. Acta Chemica Scandinavica, 36a, 159-166. doi:10.3891/acta.chem.scand.36a-0159 es_ES
dc.description.references Haaland, A., Green, J. C., McGrady, G. S., Downs, A. J., Gullo, E., Lyall, M. J., … Østby, K.-A. (2003). The length, strength and polarity of metal–carbon bonds: dialkylzinc compounds studied by density functional theory calculations, gas electron diffraction and photoelectron spectroscopy. Dalton Trans., (22), 4356-4366. doi:10.1039/b306840b es_ES
dc.description.references Resa, I., Álvarez, E., & Carmona, E. (2007). Synthesis and Structure of Half-Sandwich Zincocenes. Zeitschrift für anorganische und allgemeine Chemie, 633(11-12), 1827-1831. doi:10.1002/zaac.200700201 es_ES
dc.description.references Dinnebier, R. E., van Smaalen, S., Olbrich, F., & Carlson, S. (2005). Effect of Crystal Packing on the Structures of Polymeric Metallocenes○. Inorganic Chemistry, 44(4), 964-968. doi:10.1021/ic049214y es_ES
dc.description.references Bo, C., & Maseras, F. (2008). QM/MM methods in inorganic chemistry. Dalton Transactions, (22), 2911. doi:10.1039/b718076d es_ES
dc.description.references Burns, C. J., & Andersen, R. A. (1987). Organometallic coordination complexes of the bis(pentamethylcyclopentadienyl)-alkaline earth compounds, (Me5C5)2MLn, where M IS Mg, Ca, Sr, OR Ba and Me5C5BeCl. Journal of Organometallic Chemistry, 325(1-2), 31-37. doi:10.1016/0022-328x(87)80385-6 es_ES
dc.description.references Suginome, M., Fukuda, T., Nakamura, H., & Ito, Y. (2000). Synthesis of (Boryl)(silyl)iminomethanes by Insertion of Isonitriles into Silicon−Boron Bonds. Organometallics, 19(5), 719-721. doi:10.1021/om9909136 es_ES
dc.description.references Del Mar Conejo, M., Fernández, R., Carmona, E., Andersen, R. A., Gutiérrez-Puebla, E., & Monge, M. A. (2003). Synthetic, Reactivity, and Structural Studies on Half-Sandwich (η5-C5Me5)Be and Related Compounds: Halide, Alkyl, and Iminoacyl Derivatives. Chemistry - A European Journal, 9(18), 4462-4471. doi:10.1002/chem.200304877 es_ES
dc.description.references Zachmanoglou, C. E., Docrat, A., Bridgewater, B. M., Parkin, G., Brandow, C. G., Bercaw, J. E., … Keister, J. B. (2002). The Electronic Influence of Ring Substituents andAnsaBridges in Zirconocene Complexes as Probed by Infrared Spectroscopic, Electrochemical, and Computational Studies. Journal of the American Chemical Society, 124(32), 9525-9546. doi:10.1021/ja020236y es_ES
dc.description.references Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G., & Spagna, R. (2003). SIR2002: the program. Journal of Applied Crystallography, 36(4), 1103-1103. doi:10.1107/s0021889803012585 es_ES
dc.description.references 2000 2003 es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 es_ES
dc.description.references Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799 es_ES
dc.description.references Van Slageren, J. (2001). Resonance Raman spectra of d6 metalâ diimine complexes reflect changes in metalâ ligand interaction and character of electronic transition. Coordination Chemistry Reviews, 219-221, 937-955. doi:10.1016/s0010-8545(01)00388-5 es_ES
dc.description.references Lignell, A., Khriachtchev, L., Räsänen, M., & Pettersson, M. (2004). A study on stabilization of HHeF molecule upon complexation with Xe atoms. Chemical Physics Letters, 390(1-3), 256-260. doi:10.1016/j.cplett.2004.04.033 es_ES
dc.description.references Maseras, F., & Morokuma, K. (1995). IMOMM: A new integratedab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. Journal of Computational Chemistry, 16(9), 1170-1179. doi:10.1002/jcc.540160911 es_ES
dc.description.references Allinger, N. L., Yuh, Y. H., & Lii, J. H. (1989). Molecular mechanics. The MM3 force field for hydrocarbons. 1. Journal of the American Chemical Society, 111(23), 8551-8566. doi:10.1021/ja00205a001 es_ES
dc.description.references Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040 es_ES
dc.description.references Krut’ko, D. P., Borzov, M. V., & Veksler, E. N. (2004). On the regioselectivity of alkylation of the (trimethylsilyl)tetramethylcyclopentadienide anion. A new approach to the synthesis of 1,2,3,4-tetramethylfulvene. Russian Chemical Bulletin, 53(10), 2182-2186. doi:10.1007/s11172-005-0095-9 es_ES
dc.description.references Horáček, M., Kupfer, V., Thewalt, U., Štěpnička, P., Polášek, M., & Mach, K. (1999). Bis[η5-tetramethyl(trimethylsilyl)cyclopentadienyl]titanium(II) and Its π-Complexes with Bis(trimethylsilyl)acetylene and Ethylene. Organometallics, 18(18), 3572-3578. doi:10.1021/om990286k es_ES
dc.description.references Du Plooy, K. E., du Toit, J., Levendis, D. C., & Coville, N. J. (1996). Multiply substituted cyclopentadienyl metal complexes: I. Solid-state and solution conformational studies on. Journal of Organometallic Chemistry, 508(1-2), 231-242. doi:10.1016/0022-328x(95)05865-m es_ES
dc.description.references Constantine, S. P., Hitchcock, P. B., Lawless, G. A., & De Lima, G. M. (1996). Syntheses and molecular structures of [Sn{η-C5Me4(SiMe2But)}2] and [Fe{η-C5Me4(SiMe2But)}2]. Chem. Commun., (10), 1101-1102. doi:10.1039/cc9960001101 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem