- -

Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings

Mostrar el registro completo del ítem

Fernandez, R.; Grirrane, A.; Resa, I.; Rodriguez, A.; Carmona, E.; Alvarez, E.; Gutierrez-Puebla, E.... (2009). Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings. Chemistry - A European Journal. 15(4):924-935. https://doi.org/10.1002/chem.200801917

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66421

Ficheros en el ítem

Metadatos del ítem

Título: Structural Analysis of Zincocenes with Substituted Cyclopentadienyl Rings
Autor: Fernandez, Rafael Grirrane, Abdessamad Resa, Irene Rodriguez, Amor Carmona, Ernesto Alvarez, Eleuterio Gutierrez-Puebla, Enrique Monge, Angeles Lopez del Amo, Juan Miguel Limbach, Hans-Heinrich Lledos, Agusti Maseras, Feliu del Rio, Diego
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] New zincocenes [ZnCp'2] (2-5) with substituted cyclopentadienyl ligands C(5)Me(4)H, C(5)Me(4)tBu, C(5)Me(4)SiMe(2)tBu and C(5)Me(4)SiMe(3), respectively, have been prepared by the reaction of ZnCl(2) with the appropriate ...[+]
Palabras clave: Density functional calculations , Iminoacyl , Metallocenes , Structure elucidation , Zinc
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.200801917
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/chem.200801917
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CTQ2007-62814/ES/ENTIDADES ORGANOMETALICAS DE UTILIDAD EN PROCESOS DE ACTIVACION DE ENLACES C-H, EN SINTESIS QUIMICA Y EN EL DESARROLLO DE NUEVAS TERAPIAS ANTITUMORALES./
info:eu-repo/grantAgreement/MEC//CSD2007-00006/ES/Desarrollo de entidades organometálicas para reacciones de funcionalización selectiva en moléculas orgánicas/
info:eu-repo/grantAgreement/Junta de Andalucía//FQM672/
Agradecimientos:
Financial support front the Spanish Ministerio de Educacion y Ciencia (MEC) (project CTQ2007-62814 and Consolider-Ingenio 2010 CSD2007-00006) and the Junta Lie Andalucia (project FQM672) is gratefully acknowledged (FEDER ...[+]
Tipo: Artículo

References

KEALY, T. J., & PAUSON, P. L. (1951). A New Type of Organo-Iron Compound. Nature, 168(4285), 1039-1040. doi:10.1038/1681039b0

Miller, S. A., Tebboth, J. A., & Tremaine, J. F. (1952). 114. Dicyclopentadienyliron. Journal of the Chemical Society (Resumed), 632. doi:10.1039/jr9520000632

Fischer, E. O., & Pfab, W. (1952). Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Zeitschrift für Naturforschung B, 7(7), 377-379. doi:10.1515/znb-1952-0701 [+]
KEALY, T. J., & PAUSON, P. L. (1951). A New Type of Organo-Iron Compound. Nature, 168(4285), 1039-1040. doi:10.1038/1681039b0

Miller, S. A., Tebboth, J. A., & Tremaine, J. F. (1952). 114. Dicyclopentadienyliron. Journal of the Chemical Society (Resumed), 632. doi:10.1039/jr9520000632

Fischer, E. O., & Pfab, W. (1952). Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Zeitschrift für Naturforschung B, 7(7), 377-379. doi:10.1515/znb-1952-0701

Wilkinson, G., Rosenblum, M., Whiting, M. C., & Woodward, R. B. (1952). THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL. Journal of the American Chemical Society, 74(8), 2125-2126. doi:10.1021/ja01128a527

Wilkinson, G. (1952). The Preparation and Some Properties of Ruthenocene and Ruthenicinium Salts. Journal of the American Chemical Society, 74(23), 6146-6147. doi:10.1021/ja01143a538

Hanusa, T. P. (2002). New Developments in the Cyclopentadienyl Chemistry of the Alkaline-Earth Metals. Organometallics, 21(13), 2559-2571. doi:10.1021/om020168o

Jutzi, P., & Burford, N. (1999). Structurally Diverse π-Cyclopentadienyl Complexes of the Main Group Elements. Chemical Reviews, 99(4), 969-990. doi:10.1021/cr941099t

Stalke, D. (1994). Das Lithocen-Anion und „offenes” Calcocen — neue Anstöße in der Chemie der Alkali- und Erdalkalimetallocene. Angewandte Chemie, 106(21), 2256-2259. doi:10.1002/ange.19941062107

Stalke, D. (1994). The Lithocene Anion and«Open» Calcocene–New Impulses in the Chemistry of Alkali and Alkaline Earth Metallocenes. Angewandte Chemie International Edition in English, 33(21), 2168-2171. doi:10.1002/anie.199421681

Rayón, V. M., & Frenking, G. (2002). Structures, Bond Energies, Heats of Formation, and Quantitative Bonding Analysis of Main-Group Metallocenes [E(Cp)2] (E=Be–Ba, Zn, Si–Pb) and [E(Cp)] (E=Li–Cs, B–Tl). Chemistry - A European Journal, 8(20), 4693-4707. doi:10.1002/1521-3765(20021018)8:20<4693::aid-chem4693>3.0.co;2-b

Budzelaar, P. H. M., Engelberts, J. J., & van Lenthe, J. H. (2003). Trends in Cyclopentadienyl−Main-Group-Metal Bonding†. Organometallics, 22(8), 1562-1576. doi:10.1021/om020928v

Evans, W. J. (2007). The Importance of Questioning Scientific Assumptions:  Some Lessons from f Element Chemistry†. Inorganic Chemistry, 46(9), 3435-3449. doi:10.1021/ic062011k

Evans, W. J. (2002). The expansion of divalent organolanthanide reduction chemistry via new molecular divalent complexes and sterically induced reduction reactivity of trivalent complexes. Journal of Organometallic Chemistry, 647(1-2), 2-11. doi:10.1016/s0022-328x(01)01462-0

Evans, W. J. (2002). Recent advances in f element reduction chemistry. Journal of Organometallic Chemistry, 652(1-2), 61-68. doi:10.1016/s0022-328x(02)01308-6

Evans, W. J., & Davis, B. L. (2002). Chemistry of Tris(pentamethylcyclopentadienyl) f-Element Complexes, (C5Me5)3M. Chemical Reviews, 102(6), 2119-2136. doi:10.1021/cr010298r

Werkema, E. L., Maron, L., Eisenstein, O., & Andersen, R. A. (2007). Reactions of Monomeric [1,2,4-(Me3C)3C5H2]2CeH and CO with or without H2:  An Experimental and Computational Study. Journal of the American Chemical Society, 129(9), 2529-2541. doi:10.1021/ja066482h

Walter, M. D., Berg, D. J., & Andersen, R. A. (2007). Coordination of 1,4-Diazabutadiene Ligands to Decamethylytterbocene:  Additional Examples of Spin Coupling in Ytterbocene Complexes. Organometallics, 26(9), 2296-2307. doi:10.1021/om0610142

Barros, N., Maynau, D., Maron, L., Eisenstein, O., Zi, G., & Andersen, R. A. (2007). Single but Stronger UO, Double but Weaker UNMe Bonds:  The Tale Told by Cp2UO and Cp2UNR. Organometallics, 26(20), 5059-5065. doi:10.1021/om700628e

Janiak, C., & Schumann, H. (1991). Bulky or Supracyclopentadienyl Derivatives in Organometallic Chemistry. Advances in Organometallic Chemistry, 291-393. doi:10.1016/s0065-3055(08)60698-x

Hays, M. L., & Hanusa, T. P. (1996). Substituent Effects as Probes of Structure and Bonding in Mononuclear Metallocenes. Advances in Organometallic Chemistry, 117-170. doi:10.1016/s0065-3055(08)60533-x

Dyker, G., Heiermann, J., Miura, M., Inoh, J.-I., Pivsa-Art, S., Satoh, T., & Nomura, M. (2000). Palladium-Catalyzed Arylation of Cyclopentadienes. Chemistry - A European Journal, 6(18), 3426-3433. doi:10.1002/1521-3765(20000915)6:18<3426::aid-chem3426>3.0.co;2-b

Ruspic, C., Moss, J. R., Schürmann, M., & Harder, S. (2008). Remarkable Stability of Metallocenes with Superbulky Ligands: Spontaneous Reduction of SmIII to SmII. Angewandte Chemie, 120(11), 2151-2156. doi:10.1002/ange.200705001

Ruspic, C., Moss, J. R., Schürmann, M., & Harder, S. (2008). Remarkable Stability of Metallocenes with Superbulky Ligands: Spontaneous Reduction of SmIII to SmII. Angewandte Chemie International Edition, 47(11), 2121-2126. doi:10.1002/anie.200705001

Giesbrecht, G. R., Gordon, J. C., Clark, D. L., & Scott, B. L. (2003). Synthesis, structure and solution dynamics of lithium salts of superbulky cyclopentadienyl ligands. Dalton Transactions, (13), 2658. doi:10.1039/b302258g

Grirrane, A., Resa, I., Rodriguez, A., Carmona, E., Alvarez, E., Gutierrez-Puebla, E., … Andersen, R. A. (2007). Zinc−Zinc Bonded Zincocene Structures. Synthesis and Characterization of Zn2(η5-C5Me5)2and Zn2(η5-C5Me4Et)2. Journal of the American Chemical Society, 129(3), 693-703. doi:10.1021/ja0668217

Resa, I. (2004). Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond. Science, 305(5687), 1136-1138. doi:10.1126/science.1101356

Budzelaar, P. H. M., Boersma, J., van der Kerk, G. J. M., Spek, A. L., & Duisenberg, A. J. M. (1985). The structure of dicyclopentadienylzinc. Journal of Organometallic Chemistry, 281(2-3), 123-130. doi:10.1016/0022-328x(85)87100-x

Haaland, A., Samdal, S., Tverdova, N. V., Girichev, G. V., Giricheva, N. I., Shlykov, S. A., … Lokshin, B. V. (2003). The molecular structure of dicyclopentadienylzinc (zincocene) determined by gas electron diffraction and density functional theory calculations: η5,η5, η3,η3 or η5,η1 coordination of the ligand rings? Journal of Organometallic Chemistry, 684(1-2), 351-358. doi:10.1016/s0022-328x(03)00770-8

Del Mar Conejo, M., Fernández, R., del Río, D., Carmona, E., Monge, A., Ruiz, C., … Fernández Sanz, J. (2003). Synthesis, Solid-State Structure, and Bonding Analysis of the Beryllocenes[Be(C5Me4H)2],[Be(C5Me5)2], and[Be(C5Me5)(C5Me4H)]. Chemistry - A European Journal, 9(18), 4452-4461. doi:10.1002/chem.200304876

Wong, C. H., Lee, T. Y., Chao, K. J., & Lee, S. (1972). Crystal structure of bis(cyclopentadienyl)beryllium at –120°C. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(6), 1662-1665. doi:10.1107/s0567740872004820

Wong, C., Lee, T. Y., Lee, T. J., Chang, T. W., & Liu, C. S. (1973). Novel structure of beryllocene. Inorganic and Nuclear Chemistry Letters, 9(6), 667-673. doi:10.1016/0020-1650(73)80175-8

Nugent, K., Beattie, J., Hambley, T., & Snow, M. (1984). A precise low-temperature crystal structure of Bis(cyclopentadienyl)beryllium. Australian Journal of Chemistry, 37(8), 1601. doi:10.1071/ch9841601

Blom, R., Boersma, J., Budzelaar, P. H. M., Fischer, B., Haaland, A., Volden, H. V., … Zingaro, R. A. (1986). The Preparation of Bis(pentamethylcyclopentadienyl)zinc and Bis(trimethylsilylcyclopentadienyl)zinc, and their Molecular Structures Determined by Gas Electron Diffraction. Acta Chemica Scandinavica, 40a, 113-120. doi:10.3891/acta.chem.scand.40a-0113

Fischer, B., Wijkens, P., Boersma, J., van Koten, G., Smeets, W. J. J., Spek, A. L., & Budzelaar, P. H. M. (1989). The unusual solid state structures of the pentasubstituted bis(cyclopentadienyl)zinc compounds bis(pentamethylcyclopentadienyl)zinc and bis(tetramethylphenylcyclopentadienyl)zinc. Journal of Organometallic Chemistry, 376(2-3), 223-233. doi:10.1016/0022-328x(89)85132-0

Burkey, D. J., & Hanusa, T. P. (1996). Effects of steric strain on the bonding in zinc metallocenes: the structure of [(C3H7)4C5H]2Zn. Journal of Organometallic Chemistry, 512(1-2), 165-173. doi:10.1016/0022-328x(95)05952-l

Ly, H. V., Forster, T. D., Parvez, M., McDonald, R., & Roesler, R. (2007). Zinc, Cadmium, and Mercury Metallocenes Incorporating 1,2-Diaza-3,5-diborolyl Ligands. Organometallics, 26(14), 3516-3523. doi:10.1021/om070230n

Ly, H. V., Forster, T. D., Maley, D., Parvez, M., & Roesler, R. (2005). µ-η3:η4-Lithiocene and η3:η3-zincocene incorporating 1,2-diaza-3,5-diborolyl, a cyclopentadienyl analog. Chemical Communications, (35), 4468. doi:10.1039/b508152a

Wang, H., Kehr, G., Fröhlich, R., & Erker, G. (2007). Ein 1,8-Naphthylen-verbrücktes Bis(indenyl)zink-THF-Addukt: Synthese und Struktur eines Ansa-Zinkocen-Derivates. Angewandte Chemie, 119(26), 4992-4995. doi:10.1002/ange.200605069

Wang, H., Kehr, G., Fröhlich, R., & Erker, G. (2007). A 1,8-Naphthylene-Bridged Bis(indenyl)zinc THF Adduct: Formation and Structure of an ansa-Zincocene Derivative. Angewandte Chemie International Edition, 46(26), 4905-4908. doi:10.1002/anie.200605069

Fernández, R., Resa, I., del Río, D., Carmona, E., Gutiérrez-Puebla, E., & Monge, Á. (2003). Synthesis and Solid-State Structure of Zn(η5-C5Me4SiMe3)(η1-C5Me4SiMe3), a Zincocene with Nonparallel Cyclopentadienyl Rings. Organometallics, 22(3), 381-383. doi:10.1021/om021018g

Schumann, H., Gottfriedsen, J., Glanz, M., Dechert, S., & Demtschuk, J. (2001). Metallocenes of the alkaline earth metals and their carbene complexes. Journal of Organometallic Chemistry, 617-618, 588-600. doi:10.1016/s0022-328x(00)00684-7

Smith, M. E., & Andersen, R. A. (1996). Me5C5Ni(acac):  A Monomeric, Paramagnetic, 18-Electron, Spin-Equilibrium Molecule. Journal of the American Chemical Society, 118(45), 11119-11128. doi:10.1021/ja953873f

Shapiro, P. J., Vij, A., Yap, G. P. A., & Rheingold, A. L. (1995). The double insertion of t-butyl isocyanide by tris(tetramethylcyclopentadienyl) aluminum to form. Polyhedron, 14(1), 203-209. doi:10.1016/0277-5387(94)00354-h

Robbins, J. L., Edelstein, N., Spencer, B., & Smart, J. C. (1982). Syntheses and electronic structures of decamethylmetallocenes. Journal of the American Chemical Society, 104(7), 1882-1893. doi:10.1021/ja00371a017

Nugent, K. W., Beattie, J. K., & Field, L. D. (1989). Molecular inversion dynamics of bis(cyclopentadienyl)beryllium inferred from partially relaxed spin-spin coupling between carbon-13 and beryllium-9. The Journal of Physical Chemistry, 93(14), 5371-5377. doi:10.1021/j100351a014

Margl, P., Schwarz, K., & Blöchl, P. E. (1995). Dynamics of beryllocene. The Journal of Chemical Physics, 103(2), 683-690. doi:10.1063/1.470102

Hung, I., Macdonald, C. L. B., & Schurko, R. W. (2004). Structure and Dynamics of Homoleptic Beryllocenes: A Solid-State9Be and13C NMR Study. Chemistry - A European Journal, 10(23), 5923-5935. doi:10.1002/chem.200400404

Lopez del Amo, J. M., Buntkowsky, G., Limbach, H.-H., Resa, I., Fernández, R., & Carmona, E. (2008). Low-Temperature NMR Studies of Zn Tautomerism and Hindered Rotations in Solid Zincocene Derivatives. The Journal of Physical Chemistry A, 112(16), 3557-3565. doi:10.1021/jp711504g

Manriquez, J. M., & Bercaw, J. E. (1974). Preparation of a dinitrogen complex of bis(pentamethylcyclopentadienyl)zirconium(II). Isolation and protonation leading to stoichiometric reduction of dinitrogen to hydrazine. Journal of the American Chemical Society, 96(19), 6229-6230. doi:10.1021/ja00826a071

Pool, J. A., Lobkovsky, E., & Chirik, P. J. (2004). Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature, 427(6974), 527-530. doi:10.1038/nature02274

Beattie, J. K., & Nugent, K. W. (1992). Beryllocene and related slip-sandwich structures. Inorganica Chimica Acta, 198-200, 309-318. doi:10.1016/s0020-1693(00)92373-9

Macdonald, C. L. B., Gorden, J. D., Voigt, A., Filipponi, S., & Cowley, A. H. (2008). Group 13 decamethylmetallocenium cations. Dalton Trans., (9), 1161-1176. doi:10.1039/b716220k

Hitchcock, P. B., Keates, J. M., & Lawless, G. A. (1998). Mercurycyclopentadienyl Derivatives Are Not Always Fluxional. Journal of the American Chemical Society, 120(3), 599-600. doi:10.1021/ja972093z

Grirrane, A., Resa, I., del Río, D., Rodríguez, A., Álvarez, E., Mereiter, K., & Carmona, E. (2007). Solid-State Structures and Solution Studies of Novel Cyclopentadienyl Mercury Compounds. Inorganic Chemistry, 46(11), 4667-4676. doi:10.1021/ic0624672

Ustynyuk, Y. A., Kisin, A. V., Pribytkova, L. M., Zenkin, A. A., & Antonova, N. D. (1972). Nuclear magnetic resonance spectroscopy of metal cyclopentadienyls X. Proton magnetic resonance spectra of, and dynamic behaviour in, bis(trimethylsilyl)cyclopentadiene. Journal of Organometallic Chemistry, 42(1), 47-63. doi:10.1016/s0022-328x(00)81832-x

Jutzi, P. (1986). Fluxional .eta.1-cyclopentadienyl compounds of main-group elements. Chemical Reviews, 86(6), 983-996. doi:10.1021/cr00076a002

Pinkas, J., Kubišta, J., Gyepes, R., Čejka, J., Meunier, P., & Mach, K. (2005). Non-degenerate 1,2-silyl shift in silyl substituted alkyltrimethylcyclopentadienes. Journal of Organometallic Chemistry, 690(3), 731-741. doi:10.1016/j.jorganchem.2004.09.081

Nyulászi, L., & Schleyer, P. von R. (1999). Hyperconjugative π-Aromaticity:  How To Make Cyclopentadiene Aromatic. Journal of the American Chemical Society, 121(29), 6872-6875. doi:10.1021/ja983113f

Almenningen, A., Helgaker, T. U., Haaland, A., Samdal, S., Bastiansen, O., Braathen, G., … Cyvin, S. J. (1982). The Molecular Structures of Dimethyl-, Diethyl- and Dipropylzinc Determined by Gas Phase Electron Diffraction. Normal Coordinate Analysis and ab initio Molecular Orbital Calculations on Dimethylzinc. Acta Chemica Scandinavica, 36a, 159-166. doi:10.3891/acta.chem.scand.36a-0159

Haaland, A., Green, J. C., McGrady, G. S., Downs, A. J., Gullo, E., Lyall, M. J., … Østby, K.-A. (2003). The length, strength and polarity of metal–carbon bonds: dialkylzinc compounds studied by density functional theory calculations, gas electron diffraction and photoelectron spectroscopy. Dalton Trans., (22), 4356-4366. doi:10.1039/b306840b

Resa, I., Álvarez, E., & Carmona, E. (2007). Synthesis and Structure of Half-Sandwich Zincocenes. Zeitschrift für anorganische und allgemeine Chemie, 633(11-12), 1827-1831. doi:10.1002/zaac.200700201

Dinnebier, R. E., van Smaalen, S., Olbrich, F., & Carlson, S. (2005). Effect of Crystal Packing on the Structures of Polymeric Metallocenes○. Inorganic Chemistry, 44(4), 964-968. doi:10.1021/ic049214y

Bo, C., & Maseras, F. (2008). QM/MM methods in inorganic chemistry. Dalton Transactions, (22), 2911. doi:10.1039/b718076d

Burns, C. J., & Andersen, R. A. (1987). Organometallic coordination complexes of the bis(pentamethylcyclopentadienyl)-alkaline earth compounds, (Me5C5)2MLn, where M IS Mg, Ca, Sr, OR Ba and Me5C5BeCl. Journal of Organometallic Chemistry, 325(1-2), 31-37. doi:10.1016/0022-328x(87)80385-6

Suginome, M., Fukuda, T., Nakamura, H., & Ito, Y. (2000). Synthesis of (Boryl)(silyl)iminomethanes by Insertion of Isonitriles into Silicon−Boron Bonds. Organometallics, 19(5), 719-721. doi:10.1021/om9909136

Del Mar Conejo, M., Fernández, R., Carmona, E., Andersen, R. A., Gutiérrez-Puebla, E., & Monge, M. A. (2003). Synthetic, Reactivity, and Structural Studies on Half-Sandwich (η5-C5Me5)Be and Related Compounds: Halide, Alkyl, and Iminoacyl Derivatives. Chemistry - A European Journal, 9(18), 4462-4471. doi:10.1002/chem.200304877

Zachmanoglou, C. E., Docrat, A., Bridgewater, B. M., Parkin, G., Brandow, C. G., Bercaw, J. E., … Keister, J. B. (2002). The Electronic Influence of Ring Substituents andAnsaBridges in Zirconocene Complexes as Probed by Infrared Spectroscopic, Electrochemical, and Computational Studies. Journal of the American Chemical Society, 124(32), 9525-9546. doi:10.1021/ja020236y

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G., & Spagna, R. (2003). SIR2002: the program. Journal of Applied Crystallography, 36(4), 1103-1103. doi:10.1107/s0021889803012585

2000 2003

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799

Van Slageren, J. (2001). Resonance Raman spectra of d6 metalâ diimine complexes reflect changes in metalâ ligand interaction and character of electronic transition. Coordination Chemistry Reviews, 219-221, 937-955. doi:10.1016/s0010-8545(01)00388-5

Lignell, A., Khriachtchev, L., Räsänen, M., & Pettersson, M. (2004). A study on stabilization of HHeF molecule upon complexation with Xe atoms. Chemical Physics Letters, 390(1-3), 256-260. doi:10.1016/j.cplett.2004.04.033

Maseras, F., & Morokuma, K. (1995). IMOMM: A new integratedab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. Journal of Computational Chemistry, 16(9), 1170-1179. doi:10.1002/jcc.540160911

Allinger, N. L., Yuh, Y. H., & Lii, J. H. (1989). Molecular mechanics. The MM3 force field for hydrocarbons. 1. Journal of the American Chemical Society, 111(23), 8551-8566. doi:10.1021/ja00205a001

Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024-10035. doi:10.1021/ja00051a040

Krut’ko, D. P., Borzov, M. V., & Veksler, E. N. (2004). On the regioselectivity of alkylation of the (trimethylsilyl)tetramethylcyclopentadienide anion. A new approach to the synthesis of 1,2,3,4-tetramethylfulvene. Russian Chemical Bulletin, 53(10), 2182-2186. doi:10.1007/s11172-005-0095-9

Horáček, M., Kupfer, V., Thewalt, U., Štěpnička, P., Polášek, M., & Mach, K. (1999). Bis[η5-tetramethyl(trimethylsilyl)cyclopentadienyl]titanium(II) and Its π-Complexes with Bis(trimethylsilyl)acetylene and Ethylene. Organometallics, 18(18), 3572-3578. doi:10.1021/om990286k

Du Plooy, K. E., du Toit, J., Levendis, D. C., & Coville, N. J. (1996). Multiply substituted cyclopentadienyl metal complexes: I. Solid-state and solution conformational studies on. Journal of Organometallic Chemistry, 508(1-2), 231-242. doi:10.1016/0022-328x(95)05865-m

Constantine, S. P., Hitchcock, P. B., Lawless, G. A., & De Lima, G. M. (1996). Syntheses and molecular structures of [Sn{η-C5Me4(SiMe2But)}2] and [Fe{η-C5Me4(SiMe2But)}2]. Chem. Commun., (10), 1101-1102. doi:10.1039/cc9960001101

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem