Mostrar el registro sencillo del ítem
dc.contributor.author | Alonso Nanclares, Jesús Alberto | es_ES |
dc.contributor.author | Paredes Palacios, Roberto | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2016-06-28T12:09:07Z | |
dc.date.available | 2016-06-28T12:09:07Z | |
dc.date.issued | 2015-07 | |
dc.identifier.isbn | 978-1-4799-1959-8 | |
dc.identifier.issn | 2161-4393 | |
dc.identifier.uri | http://hdl.handle.net/10251/66684 | |
dc.description | ©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.description.abstract | Social circles detection is a special case of community detection in social network that is currently attracting a growing interest in the research community. In this paper, we propose a two-step technique, making emphasis on the mapping of the data by Restricted Boltzmann Machines (RBMs). Social circles are subsequently inferred by k-means over the preprocessed data. We define different vectorial representations from both structural egonet information and user profile features, and perform a set of tests to adjust the optimal parameters of the RBMs. We study and compare the performance on the ego-Facebook dataset of social circles from Facebook from the Stanford Large Network Dataset Collection. We compare our results with several different baselines. | es_ES |
dc.description.sponsorship | This work was developed in the framework of the W911NF-14-1-0254 research project Social Copying Community Detection (SOCOCODE), funded by the US Army Research Office (ARO). | es_ES |
dc.format.extent | 7 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IEEE | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Data Mapping by Restricted Boltzmann Machines for Social Circles Detection | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1109/IJCNN.2015.7280653 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ARO//W911NF-14-1-0254/US/Empirical Evaluation of Different Feature Representations for Social Circles Detection/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Alonso Nanclares, JA.; Paredes Palacios, R.; Rosso, P. (2015). Data Mapping by Restricted Boltzmann Machines for Social Circles Detection. IEEE. https://doi.org/10.1109/IJCNN.2015.7280653 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Joint Conference on Neural Networks (IJCNN 2015) | es_ES |
dc.relation.conferencedate | July 12-17, 2015 | es_ES |
dc.relation.conferenceplace | Killarney, Irlanda | es_ES |
dc.relation.publisherversion | http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7256526 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 306167 | es_ES |
dc.contributor.funder | Army Research Office, EEUU | es_ES |