- -

Graphenes as Efficient Metal-Free Fenton Catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphenes as Efficient Metal-Free Fenton Catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Espinosa, Juan Carlos es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Moral, Mónica es_ES
dc.contributor.author Fernandez Sanz, Javier es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-07-07T13:01:36Z
dc.date.available 2016-07-07T13:01:36Z
dc.date.issued 2015
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/67328
dc.description.abstract [EN] Reduced graphene oxide exhibits high activity as Fenton catalyst with HO. radical generation efficiency over 82 % and turnover nos. of 4540 and 15023 for phenol degrdn. and H2O2 consumption, resp. These values compare favorably with those achieved with transition metals, showing the potential of carbocatalysts for the Fenton reaction. es_ES
dc.description.sponsorship Financial support by Generalidad Valenciana (GV/2013/040 and Prometeo 2012/2013) is gratefully acknowledged. Spanish Ministry of Economy and Competitiveness is also thanked for funding (Severo Ochoa and CTQ2012-32315). en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fenton reaction es_ES
dc.subject carbon es_ES
dc.subject Graphene es_ES
dc.subject Fenton catalyst es_ES
dc.subject Phenol decompn es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject radicals es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Graphenes as Efficient Metal-Free Fenton Catalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201501533
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2013%2F040/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Espinosa, JC.; Navalón Oltra, S.; Primo Arnau, AM.; Moral, M.; Fernandez Sanz, J.; Alvaro Rodríguez, MM.; García Gómez, H. (2015). Graphenes as Efficient Metal-Free Fenton Catalysts. Chemistry - A European Journal. 21(34):11966-11971. https://doi.org/10.1002/chem.201501533 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1002/chem.201501533 es_ES
dc.description.upvformatpinicio 11966 es_ES
dc.description.upvformatpfin 11971 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 34 es_ES
dc.relation.senia 298309 es_ES
dc.identifier.eissn 1521-3765
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785 es_ES
dc.description.references Jana, R., Pathak, T. P., & Sigman, M. S. (2011). Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-organometallics as Reaction Partners. Chemical Reviews, 111(3), 1417-1492. doi:10.1021/cr100327p es_ES
dc.description.references Punniyamurthy, T., Velusamy, S., & Iqbal, J. (2005). Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chemical Reviews, 105(6), 2329-2364. doi:10.1021/cr050523v es_ES
dc.description.references Navalón, S., Álvaro, M., & García, H. (2013). Polymer- and Ionic Liquid-Containing Palladium: Recoverable Soluble Cross-Coupling Catalysts. ChemCatChem, 5(12), 3460-3480. doi:10.1002/cctc.201300339 es_ES
dc.description.references Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g es_ES
dc.description.references Su, C., & Loh, K. P. (2012). Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 46(10), 2275-2285. doi:10.1021/ar300118v es_ES
dc.description.references Su, D. S., Perathoner, S., & Centi, G. (2013). Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 113(8), 5782-5816. doi:10.1021/cr300367d es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347 es_ES
dc.description.references Kong, X.-K., Chen, C.-L., & Chen, Q.-W. (2014). Doped graphene for metal-free catalysis. Chem. Soc. Rev., 43(8), 2841-2857. doi:10.1039/c3cs60401b es_ES
dc.description.references Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 9336-9344. doi:10.1002/anie.201003024 es_ES
dc.description.references Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). Ein Konzept und seine Umsetzung: Graphen gestern, heute und morgen. Angewandte Chemie, 122(49), 9524-9532. doi:10.1002/ange.201003024 es_ES
dc.description.references Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g es_ES
dc.description.references Schaetz, A., Zeltner, M., & Stark, W. J. (2012). Carbon Modifications and Surfaces for Catalytic Organic Transformations. ACS Catalysis, 2(6), 1267-1284. doi:10.1021/cs300014k es_ES
dc.description.references Dreyer, D. R., Jia, H.-P., & Bielawski, C. W. (2010). Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions. Angewandte Chemie, 122(38), 6965-6968. doi:10.1002/ange.201002160 es_ES
dc.description.references Primo, A., Navalón, S., Asiri, A. M., & García, H. (2014). Chitosan-Templated Synthesis of Few-Layers Boron Nitride and its Unforeseen Activity as a Fenton Catalyst. Chemistry - A European Journal, 21(1), 324-330. doi:10.1002/chem.201405469 es_ES
dc.description.references Zhao, Y., Chen, W., Yuan, C., Zhu, Z., & Yan, L. (2012). Hydrogenated Graphene as Metal-free Catalyst for Fenton-like Reaction. Chinese Journal of Chemical Physics, 25(3), 335-338. doi:10.1088/1674-0068/25/03/335-338 es_ES
dc.description.references Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564 es_ES
dc.description.references Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3), 33-50. doi:10.1016/s0304-3894(02)00282-0 es_ES
dc.description.references Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256. doi:10.1016/j.apcatb.2003.09.010 es_ES
dc.description.references Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006 es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. ChemSusChem, 4(12), 1712-1730. doi:10.1002/cssc.201100216 es_ES
dc.description.references Dhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517 es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.description.references Meng, L. Y., & Park, S. J. (2010). Synthesis of Graphene Nanosheets via Thermal Exfoliation of Pretreated Graphite at Low Temperature. Advanced Materials Research, 123-125, 787-790. doi:10.4028/www.scientific.net/amr.123-125.787 es_ES
dc.description.references Zangmeister, C. D. (2010). Preparation and Evaluation of Graphite Oxide Reduced at 220 °C. Chemistry of Materials, 22(19), 5625-5629. doi:10.1021/cm102005m es_ES
dc.description.references Jin, M., Jeong, H.-K., Kim, T.-H., So, K. P., Cui, Y., Yu, W. J., … Lee, Y. H. (2010). Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. Journal of Physics D: Applied Physics, 43(27), 275402. doi:10.1088/0022-3727/43/27/275402 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Konios, D., Stylianakis, M. M., Stratakis, E., & Kymakis, E. (2014). Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108-112. doi:10.1016/j.jcis.2014.05.033 es_ES
dc.description.references Dreyer, D. R., Todd, A. D., & Bielawski, C. W. (2014). Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 43(15), 5288. doi:10.1039/c4cs00060a es_ES
dc.description.references Silva, C. M., Silva, P. L., & Pliego, J. R. (2013). Prediction of the pH-rate profile for dimethyl sulfide oxidation by hydrogen peroxide: The role of elusive H3O2+Ion. International Journal of Quantum Chemistry, 114(8), 501-507. doi:10.1002/qua.24594 es_ES
dc.description.references Sun, J.-H., Sun, S.-P., Wang, G.-L., & Qiao, L.-P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. doi:10.1016/j.dyepig.2006.04.006 es_ES
dc.description.references Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., & Shenoy, V. B. (2010). Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2(7), 581-587. doi:10.1038/nchem.686 es_ES
dc.description.references Choudhary, S., Mungse, H. P., & Khatri, O. P. (2013). Hydrothermal Deoxygenation of Graphene Oxide: Chemical and Structural Evolution. Chemistry - An Asian Journal, 8(9), 2070-2078. doi:10.1002/asia.201300553 es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216 es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216 es_ES
dc.description.references Martin, R., Navalon, S., Delgado, J. J., Calvino, J. J., Alvaro, M., & Garcia, H. (2011). Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 17(34), 9494-9502. doi:10.1002/chem.201100955 es_ES
dc.description.references Wu, P., Du, P., Zhang, H., & Cai, C. (2013). Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction. Physical Chemistry Chemical Physics, 15(18), 6920. doi:10.1039/c3cp50900a es_ES
dc.description.references Burkitt, M. J., & Mason, R. P. (1991). Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Proceedings of the National Academy of Sciences, 88(19), 8440-8444. doi:10.1073/pnas.88.19.8440 es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2011). Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem, 4(5), 650-657. doi:10.1002/cssc.201000453 es_ES
dc.description.references Navalon, S., Sempere, D., Alvaro, M., & Garcia, H. (2013). Influence of Hydrogen Annealing on the Photocatalytic Activity of Diamond-Supported Gold Catalysts. ACS Applied Materials & Interfaces, 5(15), 7160-7169. doi:10.1021/am401489n es_ES
dc.description.references Slobodian, P., Riha, P., Cavallo, P., Barbero, C. A., Benlikaya, R., Cvelbar, U., … Saha, P. (2014). Highly Enhanced Vapor Sensing of Multiwalled Carbon Nanotube Network Sensors byn-Butylamine Functionalization. Journal of Nanomaterials, 2014, 1-8. doi:10.1155/2014/589627 es_ES
dc.description.references Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., … Du, Z. (2003). Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry B, 107(16), 3712-3718. doi:10.1021/jp027500u es_ES
dc.description.references Mawhinney, D. B., Naumenko, V., Kuznetsova, A., Yates, J. T., Liu, J., & Smalley, R. E. (2000). Infrared Spectral Evidence for the Etching of Carbon Nanotubes:  Ozone Oxidation at 298 K. Journal of the American Chemical Society, 122(10), 2383-2384. doi:10.1021/ja994094s es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem