Mostrar el registro sencillo del ítem
dc.contributor.author | Tur Valiente, Manuel | es_ES |
dc.contributor.author | Albelda Vitoria, José | es_ES |
dc.contributor.author | Navarro Jiménez, José Manuel | es_ES |
dc.contributor.author | Ródenas García, Juan José | es_ES |
dc.date.accessioned | 2016-07-08T18:02:44Z | |
dc.date.available | 2016-07-08T18:02:44Z | |
dc.date.issued | 2015-04 | |
dc.identifier.issn | 0178-7675 | |
dc.identifier.uri | http://hdl.handle.net/10251/67385 | |
dc.description.abstract | The aim of this work is to propose a formulation to solve both small and large deformation contact problems using the finite element method. We consider both standard finite elements and the so-called immersed boundary elements. The method is derived from a stabilized Nitsche formulation. After introduction of a suitable Lagrange multiplier discretization the method can be simplified to obtain a modified perturbed Lagrangian formulation. The stabilizing term is iteratively computed using a smooth stress field. The method is simple to implement and the numerical results show that it is robust. The optimal convergence rate of the finite element solution can be achieved for linear elements. | es_ES |
dc.description.sponsorship | The authors wish to thank the Spanish Ministerio de Economia y Competitividad for the financial support received through the DPI Project DPI2013-46317-R. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Computational Mechanics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Contact | es_ES |
dc.subject | Stabilized | es_ES |
dc.subject | Penalty | es_ES |
dc.subject | Large deformation | es_ES |
dc.subject | Perturbed Lagrangian | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | A modified perturbed Lagrangian formulation for contact problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00466-015-1133-6 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-46317-R/ES/PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS FINITOS A PARTIR DE IMAGENES MEDICAS 3D/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Tur Valiente, M.; Albelda Vitoria, J.; Navarro Jiménez, JM.; Ródenas García, JJ. (2015). A modified perturbed Lagrangian formulation for contact problems. Computational Mechanics. 55(4):737-754. https://doi.org/10.1007/s00466-015-1133-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00466-015-1133-6 | es_ES |
dc.description.upvformatpinicio | 737 | es_ES |
dc.description.upvformatpfin | 754 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 282458 | es_ES |
dc.identifier.eissn | 1432-0924 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Annavarapu C, Hautefeuille M, Dolbow J (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 228:44–54 | es_ES |
dc.description.references | Annavarapu C, Hautefeuille M, Dolbow J (2012) Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int J Numer Methods Eng 92(2):206–228 | es_ES |
dc.description.references | Annavarapu C, Hautefeuille M, Dolbow J (2013) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: intersecting interfaces. Comput Methods Appl Mech Eng 267:318–341 | es_ES |
dc.description.references | Annavarapu C, Hautefeuille M, Dolbow J (2014) A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part I: single interface. Comput Methods Appl Mech Eng 268:417–436 | es_ES |
dc.description.references | Baiges J, Codina R, Henke F, Shahmiri S, Wall WA (2012) A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int J Numer Methods Eng 90(5):636–658 | es_ES |
dc.description.references | Barbosa HJC, Hughes TJR (1992) Circumventing the Babuska–Brezzi condition in mixed finite element approximations of elliptic variational inequalities. Comput Methods Appl Mech Eng 97(2):193–210 | es_ES |
dc.description.references | Bechet E, Moes N, Wohlmuth B (2009) A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. Int J Numer Methods Eng 78(8):931–954 | es_ES |
dc.description.references | Belgacem F, Hild P, Laborde P (1998) The mortar finite element method for contact problems. Math Comput Model 28(4–8):263–271 | es_ES |
dc.description.references | Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. ESAIM 8(R2):129–151 | es_ES |
dc.description.references | Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York | es_ES |
dc.description.references | Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput Methods Appl Mech Eng 199:2680–2686 | es_ES |
dc.description.references | Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341 | es_ES |
dc.description.references | Chouly F, Hild P, Renard Y (2013) Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments. doi: 10.1007/s00466-012-0780-0 | es_ES |
dc.description.references | Codina R, Baiges J (2009) Approximate imposition of boundary conditions in immersed boundary methods. Int J Numer Methods Eng 80(11):1379–1405 | es_ES |
dc.description.references | Coorevits P, Hild P, Lhalouani K, Sassi T (2001) Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math Comput 71(237):1–25 | es_ES |
dc.description.references | ElAbbasi N, Bathe KJ (2001) Stability and patch test performance of contact discretizations and a new solution algorithm. Comput Struct 79:1473–1486 | es_ES |
dc.description.references | Fischer K, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244 | es_ES |
dc.description.references | Fischer K, Wriggers P (2005) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195:5020–5036 | es_ES |
dc.description.references | Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82(5):537–563 | es_ES |
dc.description.references | Gitterle M, Popp A, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 84(5):543–571 | es_ES |
dc.description.references | Gravouil A, Pierres E, Baietto M (2011) Stabilized global-local X-FEM for 3D non-planar frictional contact using relevant meshes. Int J Numer Methods Eng 88(13):1449–1475 | es_ES |
dc.description.references | Hammer ME (2013) Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Comput Mech 51(6):975–998 | es_ES |
dc.description.references | Hansbo P, Lovadina C, Perugia I, Sangalli G (2005) A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numer Math 100:91– 115 | es_ES |
dc.description.references | Hartmann S, Ramm E (2008) A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers. Finite Elem Anal Des 44:245–258 | es_ES |
dc.description.references | Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended finite element method. SIAM J Numer Anal 47(2):1474–1499. doi: 10.1137/070704435 | es_ES |
dc.description.references | Heintz P, Hansbo P (2006) Stabilized Lagrange multiplier methods for bilateral contact with friction. Comput Methods Appl Mech Eng 195:4323–4333 | es_ES |
dc.description.references | Hild P (2000) Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput Methods Appl Mech Eng 184:99–123 | es_ES |
dc.description.references | Hild P, Laborde P (2002) Quadratic finite element methods for unilaterial contact problems. Appl Numer Math 41:401–421 | es_ES |
dc.description.references | Hild P, Renard Y (2010) A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer Math 115(101–129):2456–2471 | es_ES |
dc.description.references | Hueber S, Mair M, Wohlmuth B (2005) A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl Numer Math 54:555–576 | es_ES |
dc.description.references | Hueber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction. SIAM J Sci Comput 30(2):572–596 | es_ES |
dc.description.references | Hueber S, Wohlmuth B (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194:3147–3166 | es_ES |
dc.description.references | Laursen T (2002) Computational contact and impact mechanics. Springer, Berlin | es_ES |
dc.description.references | Liu F, Borja RI (2010) Stabilized low-order finite elements for frictional contact with the extended finite element method. Comput Methods Appl Mech Eng 199(37–40):2456–2471 | es_ES |
dc.description.references | McDevitt T, Laursen T (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48:1525–1547 | es_ES |
dc.description.references | Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal, pp 1–19 | es_ES |
dc.description.references | Nistor I, Guiton M, Massin P, Moes N, Geniaut S (2009) An X-FEM approach for large sliding contact along discontinuities. Int J Numer Meth Eng 78(12):1407–1435 | es_ES |
dc.description.references | Popp A, Gitterle M, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465 | es_ES |
dc.description.references | Puso M (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59:315–336 | es_ES |
dc.description.references | Puso M, Laursen T (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629 | es_ES |
dc.description.references | Puso M, Laursen T (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193:4891–4913 | es_ES |
dc.description.references | Puso M, Laursen T, Solberg J (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197:555–566 | es_ES |
dc.description.references | Ródenas J, Tur M, Fuenmayor F, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70:705–727 | es_ES |
dc.description.references | Saad Y (2003) Iterative methods for sparse linear systems., Applied Mathematical SciencesSociety for Industrial and Applied Mathematics, Philadelphia | es_ES |
dc.description.references | Sanders JD, Laursen TA, Puso M (2012) A Nitsche embedded mesh method. Comput Mech 49:243–257 | es_ES |
dc.description.references | Schott B, Wall W (2014) A new face-oriented stabilized XFEM approach foir 2D and 3D incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 276:233–265 | es_ES |
dc.description.references | Simo J, Wriggers P, Taylor R (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180 | es_ES |
dc.description.references | Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63:139–148 | es_ES |
dc.description.references | Strouboulis T, Copps K, Babuška I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47:1401–1417 | es_ES |
dc.description.references | Tur M, Fuenmayor F, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput Methods Appl Mech Eng 198:2860–2873 | es_ES |
dc.description.references | Tur M, Albelda J, Nadal E, Ródenas JJ (2014) Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. Int J Numer Methods Eng 98(6):399–417 | es_ES |
dc.description.references | Tur M, Albelda J, Marco O, Ródenas JJ (2014) Stabilized method to impose Dirichlet boundary conditions using a smooth stress field. Comput Methods Appl M, Under review | es_ES |
dc.description.references | Wohlmuth B, Popp A, Gee MW, Wall WA (2012) An abstract framework for a priori estimates for contact problems in 3d with quadratic finite elements. Comput Mech 49:735–747 | es_ES |
dc.description.references | Wriggers P (2002) Computational contact mechanics. Wiley, Chichester | es_ES |
dc.description.references | Yang B, Laursen T, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62:1183–1225 | es_ES |
dc.description.references | Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Mathe Comput Model 28(4–8):497–515 | es_ES |
dc.description.references | Zavarise G, Wriggers P (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41:407–420 | es_ES |
dc.description.references | Zavarise G, De Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416 | es_ES |
dc.description.references | Zienkiewicz O, Zhu J (1992) Superconvergent patch recovery techniques and a posteriori error estimation., Part I: the recovery technique. Int J Numer Methods Eng 33:1331–1364 | es_ES |