- -

Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye

Show full item record

Barba Bon, A.; Costero, AM.; Gil Grau, S.; Martínez-Máñez, R.; Sancenón Galarza, F. (2014). Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye. Organic and Biomolecular Chemistry. 12(43):8745-8751. doi:10.1039/c4ob01299b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67396

Files in this item

Item Metadata

Title: Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a Boron dipyrromethene (BODIPY) dye
Author: Barba Bon, Andrea Costero, Ana M. GIL GRAU, SALVADOR Martínez-Máñez, Ramón Sancenón Galarza, Félix
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
[EN] A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. Probe P4 contains three reactive sites; i.e. (i) a nucleophilic phenol ...[+]
Copyrigths: Cerrado
Organic and Biomolecular Chemistry. (issn: 1477-0520 ) (eissn: 1477-0539 )
DOI: 10.1039/c4ob01299b
Royal Society of Chemistry
Publisher version: https://dx.doi.org/10.1039/c4ob01299b
Project ID:
Spanish Government MAT2012-38429-C04
Ministerio FPI
We thank the Spanish Government (MAT2012-38429-C04) for support. A.B.B. acknowledges the award of a pre-doctoral FPI fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed.
Type: Artículo


S. M. Somani , Chemical Warfare Agent , Academic Press , San Diego , 1992

Gunderson, C. H., Lehmann, C. R., Sidell, F. R., & Jabbari, B. (1992). Nerve agents: A review. Neurology, 42(5), 946-946. doi:10.1212/wnl.42.5.946

J. A. Vale , P.Rice and T. C.Marrs , Chemical Warfare Agents: Toxicology and Treatment , ed. T. C. Marrs , R. L. Maynard and F. R. Sidell , John Wiley & Sons , Chichester , 2007 [+]
S. M. Somani , Chemical Warfare Agent , Academic Press , San Diego , 1992

Gunderson, C. H., Lehmann, C. R., Sidell, F. R., & Jabbari, B. (1992). Nerve agents: A review. Neurology, 42(5), 946-946. doi:10.1212/wnl.42.5.946

J. A. Vale , P.Rice and T. C.Marrs , Chemical Warfare Agents: Toxicology and Treatment , ed. T. C. Marrs , R. L. Maynard and F. R. Sidell , John Wiley & Sons , Chichester , 2007

A. Silver , The Biology of Cholinesterases , Elsevier , New York , 1974 , pp. 449–488

P. Taylor , in The Pharmacological Basis of Therapeutics , ed. J. G. Hardman , L. E. Limbird and A. G. Gilman , McGraw-Hill , New York , 10th edn, 2001 , pp. 175–191

Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602

Ashley, J. A., Lin, C.-H., Wirsching, P., & Janda, K. D. (1999). Monitoring Chemical Warfare Agents: A New Method for the Detection of Methylphosphonic Acid. Angewandte Chemie International Edition, 38(12), 1793-1795. doi:10.1002/(sici)1521-3773(19990614)38:12<1793::aid-anie1793>3.0.co;2-u

Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f

Bünzli, J.-C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34(12), 1048. doi:10.1039/b406082m

Zhao, B., Chen, X.-Y., Cheng, P., Liao, D.-Z., Yan, S.-P., & Jiang, Z.-H. (2004). Coordination Polymers Containing 1D Channels as Selective Luminescent Probes. Journal of the American Chemical Society, 126(47), 15394-15395. doi:10.1021/ja047141b

Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m

Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1

Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q

Joshi, K. A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., … Mulchandani, A. (2006). V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 78(1), 331-336. doi:10.1021/ac051052f

Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791t

He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022

Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y

Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e

Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071

Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027

Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054

Wang, F., Gu, H., & Swager, T. M. (2008). Carbon Nanotube/Polythiophene Chemiresistive Sensors for Chemical Warfare Agents. Journal of the American Chemical Society, 130(16), 5392-5393. doi:10.1021/ja710795k

Clavaguera, S., Raoul, N., Carella, A., Delalande, M., Celle, C., & Simonato, J.-P. (2011). Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors. Talanta, 85(5), 2542-2545. doi:10.1016/j.talanta.2011.08.012

Clavaguera, S., Carella, A., Caillier, L., Celle, C., Pécaut, J., Lenfant, S., … Simonato, J.-P. (2010). Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field-Effect Transistors. Angewandte Chemie International Edition, 49(24), 4063-4066. doi:10.1002/anie.201000122

Kwon, O. S., Park, S. J., Lee, J. S., Park, E., Kim, T., Park, H.-W., … Jang, J. (2012). Multidimensional Conducting Polymer Nanotubes for Ultrasensitive Chemical Nerve Agent Sensing. Nano Letters, 12(6), 2797-2802. doi:10.1021/nl204587t

Wei, L., Shi, D., Ye, P., Dai, Z., Chen, H., Chen, C., … Zhang, Y. (2011). Hole doping and surface functionalization of single-walled carbon nanotube chemiresistive sensors for ultrasensitive and highly selective organophosphor vapor detection. Nanotechnology, 22(42), 425501. doi:10.1088/0957-4484/22/42/425501

Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a

Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b

Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820

Han, S., Xue, Z., Wang, Z., & Wen, T. B. (2010). Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine–hydroxamate. Chemical Communications, 46(44), 8413. doi:10.1039/c0cc02881a

Ordronneau, L., Carella, A., Pohanka, M., & Simonato, J.-P. (2013). Chromogenic detection of Sarin by discolouring decomplexation of a metal coordination complex. Chemical Communications, 49(79), 8946. doi:10.1039/c3cc45029e

Xuan, W., Cao, Y., Zhou, J., & Wang, W. (2013). A FRET-based ratiometric fluorescent and colorimetric probe for the facile detection of organophosphonate nerve agent mimic DCP. Chemical Communications, 49(89), 10474. doi:10.1039/c3cc46095a

Dennison, G. H., Sambrook, M. R., & Johnston, M. R. (2014). VX and VG chemical warfare agents bidentate complexation with lanthanide ions. Chem. Commun., 50(2), 195-197. doi:10.1039/c3cc46712k

Worek, F., Thiermann, H., Szinicz, L., & Eyer, P. (2004). Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochemical Pharmacology, 68(11), 2237-2248. doi:10.1016/j.bcp.2004.07.038

Brandhuber, F., Zengerle, M., Porwol, L., Bierwisch, A., Koller, M., Reiter, G., … Kubik, S. (2013). Tabun scavengers based on hydroxamic acid containing cyclodextrins. Chemical Communications, 49(33), 3425. doi:10.1039/c3cc41290c

Royo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602

Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241

Candel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727f

Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088

Barba-Bon, A., Costero, A. M., Gil, S., Harriman, A., & Sancenón, F. (2014). Highly Selective Detection of Nerve-Agent Simulants with BODIPY Dyes. Chemistry - A European Journal, 20(21), 6339-6347. doi:10.1002/chem.201304475

Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070

Boens, N., Leen, V., & Dehaen, W. (2012). Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 41(3), 1130-1172. doi:10.1039/c1cs15132k

Madhu, S., Basu, S. K., Jadhav, S., & Ravikanth, M. (2013). 3,5-Diformyl-borondipyrromethene for selective detection of cyanide anion. The Analyst, 138(1), 299-306. doi:10.1039/c2an36407g

Bozdemir, O. A., Sozmen, F., Buyukcakir, O., Guliyev, R., Cakmak, Y., & Akkaya, E. U. (2010). Reaction-Based Sensing of Fluoride Ions Using Built-In Triggers for Intramolecular Charge Transfer and Photoinduced Electron Transfer. Organic Letters, 12(7), 1400-1403. doi:10.1021/ol100172w

Ulrich, G., & Ziessel, R. (2004). Functional dyes: bipyridines and bipyrimidine based boradiazaindacene. Tetrahedron Letters, 45(9), 1949-1953. doi:10.1016/j.tetlet.2003.12.122

Ulrich, G., & Ziessel, R. (2004). Convenient and Efficient Synthesis of Functionalized Oligopyridine Ligands Bearing Accessory Pyrromethene-BF2Fluorophores. The Journal of Organic Chemistry, 69(6), 2070-2083. doi:10.1021/jo035825g

Haefele, A., Zedde, C., Retailleau, P., Ulrich, G., & Ziessel, R. (2010). Boron Asymmetry in a BODIPY Derivative. Organic Letters, 12(8), 1672-1675. doi:10.1021/ol100109j

Qin, W., Baruah, M., De Borggraeve, W. M., & Boens, N. (2006). Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol. Journal of Photochemistry and Photobiology A: Chemistry, 183(1-2), 190-197. doi:10.1016/j.jphotochem.2006.03.015

Peng, X., Du, J., Fan, J., Wang, J., Wu, Y., Zhao, J., … Xu, T. (2007). A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. Journal of the American Chemical Society, 129(6), 1500-1501. doi:10.1021/ja0643319

Chen, Y., Wan, L., Zhang, D., Bian, Y., & Jiang, J. (2011). Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration. Photochemical & Photobiological Sciences, 10(6), 1030. doi:10.1039/c1pp00001b

Yin, Z., Tam, A. Y.-Y., Wong, K. M.-C., Tao, C.-H., Li, B., Poon, C.-T., … Yam, V. W.-W. (2012). Functionalized BODIPY with various sensory units – a versatile colorimetric and luminescent probe for pH and ions. Dalton Transactions, 41(37), 11340. doi:10.1039/c2dt30446e

Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197t

Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches:  An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b

Casey, K. G., & Quitevis, E. L. (1988). Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. The Journal of Physical Chemistry, 92(23), 6590-6594. doi:10.1021/j100334a023

Karstens, T., & Kobs, K. (1980). Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements. The Journal of Physical Chemistry, 84(14), 1871-1872. doi:10.1021/j100451a030

Didier, P., Ulrich, G., Mély, Y., & Ziessel, R. (2009). Improved push-pull-push E-Bodipy fluorophores for two-photon cell-imaging. Organic & Biomolecular Chemistry, 7(18), 3639. doi:10.1039/b911587k




This item appears in the following Collection(s)

Show full item record