- -

Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae

Mostrar el registro completo del ítem

Merchan, SE.; Pedelini, L.; Hueso Lorente, G.; Calzada, A.; Serrano Salom, R.; Yenush, L. (2011). Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes to Cells. 16(2):152-165. https://doi.org/10.1111/j.1365-2443.2010.01472.x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67397

Ficheros en el ítem

Metadatos del ítem

Título: Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae
Autor: Merchan, Stéphanie Emilie Pedelini, Leda Hueso Lorente, Guillem Calzada, Arturo Serrano Salom, Ramón Yenush, Lynne
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] We have investigated the effects of alterations in potassium homeostasis on cell cycle progression and genome stability in Saccharomyces cerevisiae. Yeast strains lacking the PPZ1 and PPZ2 phosphatase genes, which ...[+]
Palabras clave: PPZ PROTEIN PHOSPHATASES , POLARIZED CELL-GROWTH , MAP KINASE PATHWAY , SALT TOLERANCE , ALPHA-AMINOADIPATE , CATION-TRANSPORT , INTRACELLULAR PH , CYCLE REGULATOR , MKIR2.1 CHANNEL , WALL INTEGRITY
Derechos de uso: Cerrado
Fuente:
Genes to Cells. (issn: 1356-9597 )
DOI: 10.1111/j.1365-2443.2010.01472.x
Editorial:
Wiley
Versión del editor: https://dx.doi.org/10.1111/j.1365-2443.2010.01472.x
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//BFU2005-06388-C04-01/ES/REGULACION DEL POTASIO Y PH INTRACELULAR EN LEVADURA Y ARABIDOPSIS/
info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-02/ES/RUTAS DE TRANSDUCCION DE SEÑALES EN LA REGULACION DE LA HOMEOSTASIS IONICA/
Agradecimientos:
This work was supported by the Ministry of Education and Science (Madrid) [grant number BFU2005-06388-C04-01/BMC]; the Ministry of Science and Innovation (Madrid) [grant number BFU2008-04188-C03-02/BMC]; and Spanish Ministry ...[+]
Tipo: Artículo

References

Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09

Baetz, K., Moffat, J., Haynes, J., Chang, M., & Andrews, B. (2001). Transcriptional Coregulation by the Cell Integrity Mitogen-Activated Protein Kinase Slt2 and the Cell Cycle Regulator Swi4. Molecular and Cellular Biology, 21(19), 6515-6528. doi:10.1128/mcb.21.19.6515-6528.2001

Bell, S. P., & Dutta, A. (2002). DNA Replication in Eukaryotic Cells. Annual Review of Biochemistry, 71(1), 333-374. doi:10.1146/annurev.biochem.71.110601.135425 [+]
Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09

Baetz, K., Moffat, J., Haynes, J., Chang, M., & Andrews, B. (2001). Transcriptional Coregulation by the Cell Integrity Mitogen-Activated Protein Kinase Slt2 and the Cell Cycle Regulator Swi4. Molecular and Cellular Biology, 21(19), 6515-6528. doi:10.1128/mcb.21.19.6515-6528.2001

Bell, S. P., & Dutta, A. (2002). DNA Replication in Eukaryotic Cells. Annual Review of Biochemistry, 71(1), 333-374. doi:10.1146/annurev.biochem.71.110601.135425

Bertl, A., Ramos, J., Ludwig, J., Lichtenberg-Fraté, H., Reid, J., Bihler, H., … Ljungdahl, P. O. (2003). Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Molecular Microbiology, 47(3), 767-780. doi:10.1046/j.1365-2958.2003.03335.x

Bousset, K., & Diffley, J. F. X. (1998). The Cdc7 protein kinase is required for origin firing during S phase. Genes & Development, 12(4), 480-490. doi:10.1101/gad.12.4.480

Breeden, L. L. (2003). Periodic Transcription: A Cycle within a Cycle. Current Biology, 13(1), R31-R38. doi:10.1016/s0960-9822(02)01386-6

Clotet, J., Garí, E., Aldea, M., & Ariño, J. (1999). The Yeast Ser/Thr Phosphatases Sit4 and Ppz1 Play Opposite Roles in Regulation of the Cell Cycle. Molecular and Cellular Biology, 19(3), 2408-2415. doi:10.1128/mcb.19.3.2408

Clotet, J., Posas, F., de Nadal, E., & Ariño, J. (1996). The NH2-terminal Extension of Protein Phosphatase PPZ1 Has an Essential Functional Role. Journal of Biological Chemistry, 271(42), 26349-26355. doi:10.1074/jbc.271.42.26349

Downs, J. A., Lowndes, N. F., & Jackson, S. P. (2000). A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature, 408(6815), 1001-1004. doi:10.1038/35050000

Felipe, A., Vicente, R., Villalonga, N., Roura-Ferrer, M., Martínez-Mármol, R., Solé, L., … Condom, E. (2006). Potassium channels: New targets in cancer therapy. Cancer Detection and Prevention, 30(4), 375-385. doi:10.1016/j.cdp.2006.06.002

Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470

Garí, E., Piedrafita, L., Aldea, M., & Herrero, E. (1997). A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression inSaccharomyces cerevisiae. Yeast, 13(9), 837-848. doi:10.1002/(sici)1097-0061(199707)13:9<837::aid-yea145>3.0.co;2-t

Gibson, S. I., Surosky, R. T., & Tye, B. K. (1990). The phenotype of the minichromosome maintenance mutant mcm3 is characteristic of mutants defective in DNA replication. Molecular and Cellular Biology, 10(11), 5707-5720. doi:10.1128/mcb.10.11.5707

Gillies, R. J., Martinez-Zaguilan, R., Martinez, G. M., Serrano, R., & Perona, R. (1990). Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proceedings of the National Academy of Sciences, 87(19), 7414-7418. doi:10.1073/pnas.87.19.7414

Gillies, R. J., Ugurbil, K., den Hollander, J. A., & Shulman, R. G. (1981). 31P NMR studies of intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 78(4), 2125-2129. doi:10.1073/pnas.78.4.2125

Gueldener, U. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 30(6), 23e-23. doi:10.1093/nar/30.6.e23

Haase, S. B., & Lew, D. J. (1997). Flow cytometric analysis of DNA content in budding yeast. Cell Cycle Control, 322-332. doi:10.1016/s0076-6879(97)83026-1

Haro, R., Garciadeblas, B., & Rodriguez-Navarro, A. (1991). A novel P-type ATPase from yeast involved in sodium transport. FEBS Letters, 291(2), 189-191. doi:10.1016/0014-5793(91)81280-l

Hasenbrink, G., Schwarzer, S., Kolacna, L., Ludwig, J., Sychrova, H., & Lichtenberg-Fraté, H. (2005). Analysis of the mKir2.1 channel activity in potassium influx defectiveSaccharomyces cerevisiaestrains determined as changes in growth characteristics. FEBS Letters, 579(7), 1723-1731. doi:10.1016/j.febslet.2005.02.025

Hereford, L. M., & Hartwell, L. H. (1974). Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. Journal of Molecular Biology, 84(3), 445-461. doi:10.1016/0022-2836(74)90451-3

Hoeberichts, F. A., Perez-Valle, J., Montesinos, C., Mulet, J. M., Planes, M. D., Hueso, G., … Serrano, R. (2010). The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast, 27(9), 713-725. doi:10.1002/yea.1767

Hogan, E., & Koshland, D. (1992). Addition of extra origins of replication to a minichromosome suppresses its mitotic loss in cdc6 and cdc14 mutants of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 89(7), 3098-3102. doi:10.1073/pnas.89.7.3098

Igual, J. C., Johnson, A. L., & Johnston, L. H. (1996). Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. The EMBO Journal, 15(18), 5001-5013. doi:10.1002/j.1460-2075.1996.tb00880.x

Kim, K.-Y., Truman, A. W., & Levin, D. E. (2008). Yeast Mpk1 Mitogen-Activated Protein Kinase Activates Transcription through Swi4/Swi6 by a Noncatalytic Mechanism That Requires Upstream Signal. Molecular and Cellular Biology, 28(8), 2579-2589. doi:10.1128/mcb.01795-07

Koç, A., Wheeler, L. J., Mathews, C. K., & Merrill, G. F. (2003). Hydroxyurea Arrests DNA Replication by a Mechanism That Preserves Basal dNTP Pools. Journal of Biological Chemistry, 279(1), 223-230. doi:10.1074/jbc.m303952200

Kolacna, L., Zimmermannova, O., Hasenbrink, G., Schwarzer, S., Ludwig, J., Lichtenberg-Fraté, H., & Sychrova, H. (2005). New phenotypes of functional expression of the mKir2.1 channel in potassium efflux-deficientSaccharomyces cerevisiae strains. Yeast, 22(16), 1315-1323. doi:10.1002/yea.1333

Kunzelmann, K. (2005). Ion Channels and Cancer. Journal of Membrane Biology, 205(3), 159-173. doi:10.1007/s00232-005-0781-4

Lee, K. S., Hines, L. K., & Levin, D. E. (1993). A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Molecular and Cellular Biology, 13(9), 5843-5853. doi:10.1128/mcb.13.9.5843

Levin, D. E. (2005). Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 69(2), 262-291. doi:10.1128/mmbr.69.2.262-291.2005

Madden, K. (1997). SBF Cell Cycle Regulator as a Target of the Yeast PKC-MAP Kinase Pathway. Science, 275(5307), 1781-1784. doi:10.1126/science.275.5307.1781

Mazzoni, C., Zarov, P., Rambourg, A., & Mann, C. (1993). The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. The Journal of Cell Biology, 123(6), 1821-1833. doi:10.1083/jcb.123.6.1821

Merchan, S., Bernal, D., Serrano, R., & Yenush, L. (2004). Response of theSaccharomyces cerevisiaeMpk1 Mitogen-Activated Protein Kinase Pathway to Increases in Internal Turgor Pressure Caused by Loss of Ppz Protein Phosphatases. Eukaryotic Cell, 3(1), 100-107. doi:10.1128/ec.3.1.100-107.2004

Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328

De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357

Pardo, L. A. (1999). Oncogenic potential of EAG K+ channels. The EMBO Journal, 18(20), 5540-5547. doi:10.1093/emboj/18.20.5540

Perona, R., & Serrano, R. (1988). Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature, 334(6181), 438-440. doi:10.1038/334438a0

Posas, F., Camps, M., & Ario, J. (1995). The PPZ Protein Phosphatases Are Important Determinants of Salt Tolerance in Yeast Cells. Journal of Biological Chemistry, 270(22), 13036-13041. doi:10.1074/jbc.270.22.13036

Posas, F., Casamayor, A., & Ariño, J. (1993). The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Letters, 318(3), 282-286. doi:10.1016/0014-5793(93)80529-4

Ruiz, A., Yenush, L., & Ariño, J. (2003). Regulation ofENA1Na+-ATPase Gene Expression by the Ppz1 Protein Phosphatase Is Mediated by the Calcineurin Pathway. Eukaryotic Cell, 2(5), 937-948. doi:10.1128/ec.2.5.937-948.2003

Tanaka, S. (2002). Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes & Development, 16(20), 2639-2649. doi:10.1101/gad.1011002

Tong, A. H. Y. (2004). Global Mapping of the Yeast Genetic Interaction Network. Science, 303(5659), 808-813. doi:10.1126/science.1091317

Verma, N. C., & Singh, R. K. (2001). Stress-Inducible DNA Repair in Saccharomyces Cerevisiae. Journal of Environmental Pathology, Toxicology and Oncology, 20(1), 7. doi:10.1615/jenvironpatholtoxicoloncol.v20.i1.10

Watanabe, Y., Irie, K., & Matsumoto, K. (1995). Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Molecular and Cellular Biology, 15(10), 5740-5749. doi:10.1128/mcb.15.10.5740

Wulff, H., Castle, N. A., & Pardo, L. A. (2009). Voltage-gated potassium channels as therapeutic targets. Nature Reviews Drug Discovery, 8(12), 982-1001. doi:10.1038/nrd2983

Yan, H., Gibson, S., & Tye, B. K. (1991). Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes & Development, 5(6), 944-957. doi:10.1101/gad.5.6.944

Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005

Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920

Zarzov, P., Mazzoni, C., & Mann, C. (1996). The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. The EMBO Journal, 15(1), 83-91. doi:10.1002/j.1460-2075.1996.tb00336.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem