- -

Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Merchan, Stéphanie Emilie es_ES
dc.contributor.author Pedelini, Leda es_ES
dc.contributor.author Hueso Lorente, Guillem es_ES
dc.contributor.author Calzada, Arturo es_ES
dc.contributor.author Serrano Salom, Ramón es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.date.accessioned 2016-07-11T08:02:55Z
dc.date.available 2016-07-11T08:02:55Z
dc.date.issued 2011-02
dc.identifier.issn 1356-9597
dc.identifier.uri http://hdl.handle.net/10251/67397
dc.description.abstract [EN] We have investigated the effects of alterations in potassium homeostasis on cell cycle progression and genome stability in Saccharomyces cerevisiae. Yeast strains lacking the PPZ1 and PPZ2 phosphatase genes, which aberrantly accumulate potassium, are sensitive to agents causing replicative stress or DNA damage and present a cell cycle delay in the G(1)/S phase. A synthetic slow growth phenotype was identified in a subset of DNA repair mutants upon inhibition of Ppz activity. Moreover, we observe that this slow growth phenotype observed in cdc7ts mutants with reduced Ppz activity is reverted by disrupting the TRK1 potassium transporter gene. As over-expression of a mammalian potassium transporter leads to similar phenotypes, we conclude that these defects can be attributed to potassium accumulation. As we reported previously, internal potassium accumulation activates the Slt2 MAP kinase pathway. We show that the removal of SLT2 in ppz1 ppz2 mutants ameliorates sensitivity to agents causing replication stress and DNA damage, whereas over-activation of the pathway leads to similar cell cycle-related defects. Taken together, these results are consistent with inappropriate potassium accumulation reducing DNA replication efficiency, negatively influencing DNA integrity and leading to the requirement of mismatch repair, the MRX complex, or homologous recombination pathways for normal growth. es_ES
dc.description.sponsorship This work was supported by the Ministry of Education and Science (Madrid) [grant number BFU2005-06388-C04-01/BMC]; the Ministry of Science and Innovation (Madrid) [grant number BFU2008-04188-C03-02/BMC]; and Spanish Ministry of Science and Technology [Ramon y Cajal fellowship to L.Y. and predoctoral fellowship to S.M.]. The authors would like to acknowledge Jose Ramon Murguia for helpful comments and Jose Miguel Mulet, David Quintana, Maria Molina, and Jost Ludwig for providing strains and plasmids.
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Genes to Cells es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PPZ PROTEIN PHOSPHATASES es_ES
dc.subject POLARIZED CELL-GROWTH es_ES
dc.subject MAP KINASE PATHWAY es_ES
dc.subject SALT TOLERANCE es_ES
dc.subject ALPHA-AMINOADIPATE es_ES
dc.subject CATION-TRANSPORT es_ES
dc.subject INTRACELLULAR PH es_ES
dc.subject CYCLE REGULATOR es_ES
dc.subject MKIR2.1 CHANNEL es_ES
dc.subject WALL INTEGRITY es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1365-2443.2010.01472.x
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BFU2005-06388-C04-01/ES/REGULACION DEL POTASIO Y PH INTRACELULAR EN LEVADURA Y ARABIDOPSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-04188-C03-02/ES/RUTAS DE TRANSDUCCION DE SEÑALES EN LA REGULACION DE LA HOMEOSTASIS IONICA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Merchan, SE.; Pedelini, L.; Hueso Lorente, G.; Calzada, A.; Serrano Salom, R.; Yenush, L. (2011). Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes to Cells. 16(2):152-165. https://doi.org/10.1111/j.1365-2443.2010.01472.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1111/j.1365-2443.2010.01472.x es_ES
dc.description.upvformatpinicio 152 es_ES
dc.description.upvformatpfin 165 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 39416 es_ES
dc.identifier.pmid 21143561
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Arino, J., Ramos, J., & Sychrova, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09 es_ES
dc.description.references Baetz, K., Moffat, J., Haynes, J., Chang, M., & Andrews, B. (2001). Transcriptional Coregulation by the Cell Integrity Mitogen-Activated Protein Kinase Slt2 and the Cell Cycle Regulator Swi4. Molecular and Cellular Biology, 21(19), 6515-6528. doi:10.1128/mcb.21.19.6515-6528.2001 es_ES
dc.description.references Bell, S. P., & Dutta, A. (2002). DNA Replication in Eukaryotic Cells. Annual Review of Biochemistry, 71(1), 333-374. doi:10.1146/annurev.biochem.71.110601.135425 es_ES
dc.description.references Bertl, A., Ramos, J., Ludwig, J., Lichtenberg-Fraté, H., Reid, J., Bihler, H., … Ljungdahl, P. O. (2003). Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Molecular Microbiology, 47(3), 767-780. doi:10.1046/j.1365-2958.2003.03335.x es_ES
dc.description.references Bousset, K., & Diffley, J. F. X. (1998). The Cdc7 protein kinase is required for origin firing during S phase. Genes & Development, 12(4), 480-490. doi:10.1101/gad.12.4.480 es_ES
dc.description.references Breeden, L. L. (2003). Periodic Transcription: A Cycle within a Cycle. Current Biology, 13(1), R31-R38. doi:10.1016/s0960-9822(02)01386-6 es_ES
dc.description.references Clotet, J., Garí, E., Aldea, M., & Ariño, J. (1999). The Yeast Ser/Thr Phosphatases Sit4 and Ppz1 Play Opposite Roles in Regulation of the Cell Cycle. Molecular and Cellular Biology, 19(3), 2408-2415. doi:10.1128/mcb.19.3.2408 es_ES
dc.description.references Clotet, J., Posas, F., de Nadal, E., & Ariño, J. (1996). The NH2-terminal Extension of Protein Phosphatase PPZ1 Has an Essential Functional Role. Journal of Biological Chemistry, 271(42), 26349-26355. doi:10.1074/jbc.271.42.26349 es_ES
dc.description.references Downs, J. A., Lowndes, N. F., & Jackson, S. P. (2000). A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature, 408(6815), 1001-1004. doi:10.1038/35050000 es_ES
dc.description.references Felipe, A., Vicente, R., Villalonga, N., Roura-Ferrer, M., Martínez-Mármol, R., Solé, L., … Condom, E. (2006). Potassium channels: New targets in cancer therapy. Cancer Detection and Prevention, 30(4), 375-385. doi:10.1016/j.cdp.2006.06.002 es_ES
dc.description.references Ferrando, A., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1995). Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Molecular and Cellular Biology, 15(10), 5470-5481. doi:10.1128/mcb.15.10.5470 es_ES
dc.description.references Garí, E., Piedrafita, L., Aldea, M., & Herrero, E. (1997). A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression inSaccharomyces cerevisiae. Yeast, 13(9), 837-848. doi:10.1002/(sici)1097-0061(199707)13:9<837::aid-yea145>3.0.co;2-t es_ES
dc.description.references Gibson, S. I., Surosky, R. T., & Tye, B. K. (1990). The phenotype of the minichromosome maintenance mutant mcm3 is characteristic of mutants defective in DNA replication. Molecular and Cellular Biology, 10(11), 5707-5720. doi:10.1128/mcb.10.11.5707 es_ES
dc.description.references Gillies, R. J., Martinez-Zaguilan, R., Martinez, G. M., Serrano, R., & Perona, R. (1990). Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proceedings of the National Academy of Sciences, 87(19), 7414-7418. doi:10.1073/pnas.87.19.7414 es_ES
dc.description.references Gillies, R. J., Ugurbil, K., den Hollander, J. A., & Shulman, R. G. (1981). 31P NMR studies of intracellular pH and phosphate metabolism during cell division cycle of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 78(4), 2125-2129. doi:10.1073/pnas.78.4.2125 es_ES
dc.description.references Gueldener, U. (2002). A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 30(6), 23e-23. doi:10.1093/nar/30.6.e23 es_ES
dc.description.references Haase, S. B., & Lew, D. J. (1997). Flow cytometric analysis of DNA content in budding yeast. Cell Cycle Control, 322-332. doi:10.1016/s0076-6879(97)83026-1 es_ES
dc.description.references Haro, R., Garciadeblas, B., & Rodriguez-Navarro, A. (1991). A novel P-type ATPase from yeast involved in sodium transport. FEBS Letters, 291(2), 189-191. doi:10.1016/0014-5793(91)81280-l es_ES
dc.description.references Hasenbrink, G., Schwarzer, S., Kolacna, L., Ludwig, J., Sychrova, H., & Lichtenberg-Fraté, H. (2005). Analysis of the mKir2.1 channel activity in potassium influx defectiveSaccharomyces cerevisiaestrains determined as changes in growth characteristics. FEBS Letters, 579(7), 1723-1731. doi:10.1016/j.febslet.2005.02.025 es_ES
dc.description.references Hereford, L. M., & Hartwell, L. H. (1974). Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. Journal of Molecular Biology, 84(3), 445-461. doi:10.1016/0022-2836(74)90451-3 es_ES
dc.description.references Hoeberichts, F. A., Perez-Valle, J., Montesinos, C., Mulet, J. M., Planes, M. D., Hueso, G., … Serrano, R. (2010). The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast, 27(9), 713-725. doi:10.1002/yea.1767 es_ES
dc.description.references Hogan, E., & Koshland, D. (1992). Addition of extra origins of replication to a minichromosome suppresses its mitotic loss in cdc6 and cdc14 mutants of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 89(7), 3098-3102. doi:10.1073/pnas.89.7.3098 es_ES
dc.description.references Igual, J. C., Johnson, A. L., & Johnston, L. H. (1996). Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. The EMBO Journal, 15(18), 5001-5013. doi:10.1002/j.1460-2075.1996.tb00880.x es_ES
dc.description.references Kim, K.-Y., Truman, A. W., & Levin, D. E. (2008). Yeast Mpk1 Mitogen-Activated Protein Kinase Activates Transcription through Swi4/Swi6 by a Noncatalytic Mechanism That Requires Upstream Signal. Molecular and Cellular Biology, 28(8), 2579-2589. doi:10.1128/mcb.01795-07 es_ES
dc.description.references Koç, A., Wheeler, L. J., Mathews, C. K., & Merrill, G. F. (2003). Hydroxyurea Arrests DNA Replication by a Mechanism That Preserves Basal dNTP Pools. Journal of Biological Chemistry, 279(1), 223-230. doi:10.1074/jbc.m303952200 es_ES
dc.description.references Kolacna, L., Zimmermannova, O., Hasenbrink, G., Schwarzer, S., Ludwig, J., Lichtenberg-Fraté, H., & Sychrova, H. (2005). New phenotypes of functional expression of the mKir2.1 channel in potassium efflux-deficientSaccharomyces cerevisiae strains. Yeast, 22(16), 1315-1323. doi:10.1002/yea.1333 es_ES
dc.description.references Kunzelmann, K. (2005). Ion Channels and Cancer. Journal of Membrane Biology, 205(3), 159-173. doi:10.1007/s00232-005-0781-4 es_ES
dc.description.references Lee, K. S., Hines, L. K., & Levin, D. E. (1993). A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Molecular and Cellular Biology, 13(9), 5843-5853. doi:10.1128/mcb.13.9.5843 es_ES
dc.description.references Levin, D. E. (2005). Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 69(2), 262-291. doi:10.1128/mmbr.69.2.262-291.2005 es_ES
dc.description.references Madden, K. (1997). SBF Cell Cycle Regulator as a Target of the Yeast PKC-MAP Kinase Pathway. Science, 275(5307), 1781-1784. doi:10.1126/science.275.5307.1781 es_ES
dc.description.references Mazzoni, C., Zarov, P., Rambourg, A., & Mann, C. (1993). The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. The Journal of Cell Biology, 123(6), 1821-1833. doi:10.1083/jcb.123.6.1821 es_ES
dc.description.references Merchan, S., Bernal, D., Serrano, R., & Yenush, L. (2004). Response of theSaccharomyces cerevisiaeMpk1 Mitogen-Activated Protein Kinase Pathway to Increases in Internal Turgor Pressure Caused by Loss of Ppz Protein Phosphatases. Eukaryotic Cell, 3(1), 100-107. doi:10.1128/ec.3.1.100-107.2004 es_ES
dc.description.references Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328 es_ES
dc.description.references De Nadal, E., Clotet, J., Posas, F., Serrano, R., Gomez, N., & Arino, J. (1998). The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proceedings of the National Academy of Sciences, 95(13), 7357-7362. doi:10.1073/pnas.95.13.7357 es_ES
dc.description.references Pardo, L. A. (1999). Oncogenic potential of EAG K+ channels. The EMBO Journal, 18(20), 5540-5547. doi:10.1093/emboj/18.20.5540 es_ES
dc.description.references Perona, R., & Serrano, R. (1988). Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature, 334(6181), 438-440. doi:10.1038/334438a0 es_ES
dc.description.references Posas, F., Camps, M., & Ario, J. (1995). The PPZ Protein Phosphatases Are Important Determinants of Salt Tolerance in Yeast Cells. Journal of Biological Chemistry, 270(22), 13036-13041. doi:10.1074/jbc.270.22.13036 es_ES
dc.description.references Posas, F., Casamayor, A., & Ariño, J. (1993). The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Letters, 318(3), 282-286. doi:10.1016/0014-5793(93)80529-4 es_ES
dc.description.references Ruiz, A., Yenush, L., & Ariño, J. (2003). Regulation ofENA1Na+-ATPase Gene Expression by the Ppz1 Protein Phosphatase Is Mediated by the Calcineurin Pathway. Eukaryotic Cell, 2(5), 937-948. doi:10.1128/ec.2.5.937-948.2003 es_ES
dc.description.references Tanaka, S. (2002). Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes & Development, 16(20), 2639-2649. doi:10.1101/gad.1011002 es_ES
dc.description.references Tong, A. H. Y. (2004). Global Mapping of the Yeast Genetic Interaction Network. Science, 303(5659), 808-813. doi:10.1126/science.1091317 es_ES
dc.description.references Verma, N. C., & Singh, R. K. (2001). Stress-Inducible DNA Repair in Saccharomyces Cerevisiae. Journal of Environmental Pathology, Toxicology and Oncology, 20(1), 7. doi:10.1615/jenvironpatholtoxicoloncol.v20.i1.10 es_ES
dc.description.references Watanabe, Y., Irie, K., & Matsumoto, K. (1995). Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Molecular and Cellular Biology, 15(10), 5740-5749. doi:10.1128/mcb.15.10.5740 es_ES
dc.description.references Wulff, H., Castle, N. A., & Pardo, L. A. (2009). Voltage-gated potassium channels as therapeutic targets. Nature Reviews Drug Discovery, 8(12), 982-1001. doi:10.1038/nrd2983 es_ES
dc.description.references Yan, H., Gibson, S., & Tye, B. K. (1991). Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes & Development, 5(6), 944-957. doi:10.1101/gad.5.6.944 es_ES
dc.description.references Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005 es_ES
dc.description.references Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920 es_ES
dc.description.references Zarzov, P., Mazzoni, C., & Mann, C. (1996). The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. The EMBO Journal, 15(1), 83-91. doi:10.1002/j.1460-2075.1996.tb00336.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem