- -

Metal-containing zeolites as efficient catalyst for the transformation of highly valuable chiral biomass-derived products

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Metal-containing zeolites as efficient catalyst for the transformation of highly valuable chiral biomass-derived products

Show simple item record

Files in this item

dc.contributor.author Paris Carrizo, Cecilia Gertrudis es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2016-07-11T09:32:00Z
dc.date.available 2016-07-11T09:32:00Z
dc.date.issued 2013
dc.identifier.issn 1463-9262
dc.identifier.uri http://hdl.handle.net/10251/67403
dc.description.abstract Metal-containing zeolites, especially Sn-Beta, perform as very efficient heterogeneous catalysts in the selective oxidation of levoglucosenone, which is considered as a platform chemical for the production of highly-valuable chemicals, towards the synthesis of the optically pure gamma-lactone(S)-gamma-hydroxymethyl-alpha,beta-butenolide (HBO) using H2O2 as an oxidizing agent. Using Sn-Beta as a catalyst, yields up to 75% of (S)-gamma-hydroxymethyl-alpha,beta-butenolide are achieved in a "one-pot" cascade reaction. When Sn-Beta is combined with an acid resin, such as Amberlyst-15, the "two-step" process allows yields up to 90%. es_ES
dc.description.sponsorship This work has been supported by the Spanish Government MINECO through Consolider Ingenio 2010-Multicat and MAT2012-37160, and by UPV through PAID-06-11 (n.1952). Manuel Moliner also acknowledges "Subprograma Ramon y Cajal" for contract RYC-2011-08972. ITQ thanks the "Program Severo Ochoa" for financial support. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MEERWEIN-PONNDORF-VERLEY es_ES
dc.subject SOLID LEWIS-ACIDS es_ES
dc.subject SN-BETA ZEOLITES es_ES
dc.subject PROMISING METHOD es_ES
dc.subject FAST PYROLYSIS es_ES
dc.subject WATER es_ES
dc.subject ISOMERIZATION es_ES
dc.subject CONVERSION es_ES
dc.subject MECHANISM es_ES
dc.subject CHEMICALS es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Metal-containing zeolites as efficient catalyst for the transformation of highly valuable chiral biomass-derived products es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3gc40267c
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-1952/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2011-08972/ES/RYC-2011-08972/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-37160/ES/SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO DE ?ESPONJAS DE PROTONES? COMO AGENTES DIRECTORES DE ESTRUCTURA (ADES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Paris Carrizo, CG.; Moliner Marin, M.; Corma Canós, A. (2013). Metal-containing zeolites as efficient catalyst for the transformation of highly valuable chiral biomass-derived products. Green Chemistry. 15(8):2101-2109. https://doi.org/10.1039/c3gc40267c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3gc40267c es_ES
dc.description.upvformatpinicio 2101 es_ES
dc.description.upvformatpfin 2109 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 258030 es_ES
dc.identifier.eissn 1463-9270
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Miftakhov, M. S., Valeev, F. A., & Gaisina, I. N. (1994). Levoglucosenone: the properties, reactions, and use in fine organic synthesis. Russian Chemical Reviews, 63(10), 869-882. doi:10.1070/rc1994v063n10abeh000123 es_ES
dc.description.references Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479-1493. doi:10.1016/s0146-6380(99)00120-5 es_ES
dc.description.references Lu, Q., Xiong, W.-M., Li, W.-Z., Guo, Q.-X., & Zhu, X.-F. (2009). Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds. Bioresource Technology, 100(20), 4871-4876. doi:10.1016/j.biortech.2009.04.068 es_ES
dc.description.references Shafizadeh, F., Furneaux, R. H., Stevenson, T. T., & Cochran, T. G. (1978). Acid-catalyzed pyrolytic synthesis and decomposition of 1,4:3,6-dianhydro-α-d-glucopyranose. Carbohydrate Research, 61(1), 519-528. doi:10.1016/s0008-6215(00)84510-3 es_ES
dc.description.references Dobele, G., Dizhbite, T., Rossinskaja, G., Telysheva, G., Meier, D., Radtke, S., & Faix, O. (2003). Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 68-69, 197-211. doi:10.1016/s0165-2370(03)00063-9 es_ES
dc.description.references Zandersons, J., Zhurinsh, A., Dobele, G., Jurkjane, V., Rizhikovs, J., Spince, B., & Pazhe, A. (2013). Feasibility of broadening the feedstock choice for levoglucosenone production by acid pre-treatment of wood and catalytic pyrolysis of the obtained lignocellulose. Journal of Analytical and Applied Pyrolysis, 103, 222-226. doi:10.1016/j.jaap.2013.01.014 es_ES
dc.description.references Jae, J., Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R. F., & Huber, G. W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279(2), 257-268. doi:10.1016/j.jcat.2011.01.019 es_ES
dc.description.references Budarin, V. L., Shuttleworth, P. S., Dodson, J. R., Hunt, A. J., Lanigan, B., Marriott, R., … Clark, J. H. (2011). Use of green chemical technologies in an integrated biorefinery. Energy Environ. Sci., 4(2), 471-479. doi:10.1039/c0ee00184h es_ES
dc.description.references Hu, X., Wu, L., Wang, Y., Mourant, D., Lievens, C., Gunawan, R., & Li, C.-Z. (2012). Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. Green Chemistry, 14(11), 3087. doi:10.1039/c2gc35961h es_ES
dc.description.references Tomioka, K., Ishiguro, T., & Koga, K. (1979). Asymmetric total synthesis of the antileukaemic lignans (+)-trans-burseran and (–)-isostegane. J. Chem. Soc., Chem. Commun., (15), 652-653. doi:10.1039/c39790000652 es_ES
dc.description.references Enders, D., Lausberg, V., Signore, G. D., & Berner, O. M. (2002). A General Approach to the Asymmetric Synthesis of Lignans: (-)-Methyl Piperitol, (-)-Sesamin, (-)-Aschantin, (+)-Yatein, (+)-Dihydroclusin, (+)-Burseran, and (-)-Isostegane. Synthesis, 2002(04), 515-522. doi:10.1055/s-2002-20967 es_ES
dc.description.references Ehata, T., Ebata, T., Matsumoto, K., Yoshikoshi, H., Koseki, K., Kawakami, H., & Matsushita, H. (1990). Synthesis of (+)-trans-Whisky Lactone, (+)-trans-Cognac Lactone and (+)-Eldanolide. HETEROCYCLES, 31(9), 1585. doi:10.3987/com-90-5486 es_ES
dc.description.references Kawakami, H., Ebata, T., Koseki, K., Matsumoto, K., Matsushita, H., Naoi, Y., & Itoh, K. (1990). Stereoselectivities in the Coupling Reaction between Silylated Pyrimidine Bases and 1-Halo-2,3-dideoxyribose. HETEROCYCLES, 31(11), 2041. doi:10.3987/com-90-5563 es_ES
dc.description.references Flores, R., Rustullet, A., Alibés, R., Álvarez-Larena, A., March, P. de, Figueredo, M., & Font, J. (2011). Synthesis of Purine Nucleosides Built on a 3-Oxabicyclo[3.2.0]heptane Scaffold. The Journal of Organic Chemistry, 76(13), 5369-5383. doi:10.1021/jo200775x es_ES
dc.description.references Díaz-Rodríguez, A., Sanghvi, Y. S., Fernández, S., Schinazi, R. F., Theodorakis, E. A., Ferrero, M., & Gotor, V. (2009). Synthesis and anti-HIV activity of conformationally restricted bicyclic hexahydroisobenzofuran nucleoside analogs. Organic & Biomolecular Chemistry, 7(7), 1415. doi:10.1039/b818707j es_ES
dc.description.references Koseki, K., Ebata, T., Kawakami, H., Matsushita, H., Naoi, Y., & Itoh, K. (1990). A Method for Easy Preparation of Optically Pure (S)-5-Hydroxy-2-penten-4-olide and (S)-5-Hydroxypentan-4-olide. HETEROCYCLES, 31(3), 423. doi:10.3987/com-89-5300 es_ES
dc.description.references Shafizadeh, F., Furneaux, R. H., & Stevenson, T. T. (1979). Some reactions of levoglucosenone. Carbohydrate Research, 71(1), 169-191. doi:10.1016/s0008-6215(00)86069-3 es_ES
dc.description.references Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546 es_ES
dc.description.references Corma, A., Domine, M. E., Nemeth, L., & Valencia, S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction). Journal of the American Chemical Society, 124(13), 3194-3195. doi:10.1021/ja012297m es_ES
dc.description.references BORONAT, M., CONCEPCION, P., CORMA, A., RENZ, M., & VALENCIA, S. (2005). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 234(1), 111-118. doi:10.1016/j.jcat.2005.05.023 es_ES
dc.description.references Corma, A., Iborra, S., Mifsud, M., Renz, M., & Susarte, M. (2004). A New Environmentally Benign Catalytic Process for the Asymmetric Synthesis of Lactones: Synthesis of the Flavouringδ-Decalactone Molecule. Advanced Synthesis & Catalysis, 346(23), 257-262. doi:10.1002/adsc.200303234 es_ES
dc.description.references Boronat, M., Corma, A., & Renz, M. (2006). Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts. The Journal of Physical Chemistry B, 110(42), 21168-21174. doi:10.1021/jp063249x es_ES
dc.description.references Román-Leshkov, Y., & Davis, M. E. (2011). Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 1(11), 1566-1580. doi:10.1021/cs200411d es_ES
dc.description.references Moliner, M., Roman-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. doi:10.1073/pnas.1002358107 es_ES
dc.description.references Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie International Edition, 49(47), 8954-8957. doi:10.1002/anie.201004689 es_ES
dc.description.references Nikolla, E., Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2011). «One-Pot» Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 1(4), 408-410. doi:10.1021/cs2000544 es_ES
dc.description.references Lew, C. M., Rajabbeigi, N., & Tsapatsis, M. (2012). One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Industrial & Engineering Chemistry Research, 51(14), 5364-5366. doi:10.1021/ie2025536 es_ES
dc.description.references Holm, M. S., Saravanamurugan, S., & Taarning, E. (2010). Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts. Science, 328(5978), 602-605. doi:10.1126/science.1183990 es_ES
dc.description.references Gunther, W. R., Wang, Y., Ji, Y., Michaelis, V. K., Hunt, S. T., Griffin, R. G., & Román-Leshkov, Y. (2012). Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nature Communications, 3(1). doi:10.1038/ncomms2122 es_ES
dc.description.references Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9 es_ES
dc.description.references Corma, A., & Renz, M. (2004). Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl–ene reaction. Chem. Commun., (5), 550-551. doi:10.1039/b313738d es_ES
dc.description.references Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46(1-2), 298-300. doi:10.1002/anie.200604018 es_ES
dc.description.references Treacy, M. M. J., & Newsam, J. M. (1988). Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature, 332(6161), 249-251. doi:10.1038/332249a0 es_ES
dc.description.references Chang, C.-C., Wang, Z., Dornath, P., Je Cho, H., & Fan, W. (2012). Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars. RSC Advances, 2(28), 10475. doi:10.1039/c2ra21381h es_ES
dc.description.references Rabo, J. A. (1981). Unifying Principles in Zeolite Chemistry and Catalysis. Catalysis Reviews, 23(1-2), 293-313. doi:10.1080/03602458108068080 es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references Kunkeler, P. J., Zuurdeeg, B. J., van der Waal, J. C., van Bokhoven, J. A., Koningsberger, D. C., & van Bekkum, H. (1998). Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of Catalysis, 180(2), 234-244. doi:10.1006/jcat.1998.2273 es_ES


This item appears in the following Collection(s)

Show simple item record