Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Miftakhov, M. S., Valeev, F. A., & Gaisina, I. N. (1994). Levoglucosenone: the properties, reactions, and use in fine organic synthesis. Russian Chemical Reviews, 63(10), 869-882. doi:10.1070/rc1994v063n10abeh000123
[+]
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Miftakhov, M. S., Valeev, F. A., & Gaisina, I. N. (1994). Levoglucosenone: the properties, reactions, and use in fine organic synthesis. Russian Chemical Reviews, 63(10), 869-882. doi:10.1070/rc1994v063n10abeh000123
Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479-1493. doi:10.1016/s0146-6380(99)00120-5
Lu, Q., Xiong, W.-M., Li, W.-Z., Guo, Q.-X., & Zhu, X.-F. (2009). Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds. Bioresource Technology, 100(20), 4871-4876. doi:10.1016/j.biortech.2009.04.068
Shafizadeh, F., Furneaux, R. H., Stevenson, T. T., & Cochran, T. G. (1978). Acid-catalyzed pyrolytic synthesis and decomposition of 1,4:3,6-dianhydro-α-d-glucopyranose. Carbohydrate Research, 61(1), 519-528. doi:10.1016/s0008-6215(00)84510-3
Dobele, G., Dizhbite, T., Rossinskaja, G., Telysheva, G., Meier, D., Radtke, S., & Faix, O. (2003). Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 68-69, 197-211. doi:10.1016/s0165-2370(03)00063-9
Zandersons, J., Zhurinsh, A., Dobele, G., Jurkjane, V., Rizhikovs, J., Spince, B., & Pazhe, A. (2013). Feasibility of broadening the feedstock choice for levoglucosenone production by acid pre-treatment of wood and catalytic pyrolysis of the obtained lignocellulose. Journal of Analytical and Applied Pyrolysis, 103, 222-226. doi:10.1016/j.jaap.2013.01.014
Jae, J., Tompsett, G. A., Foster, A. J., Hammond, K. D., Auerbach, S. M., Lobo, R. F., & Huber, G. W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 279(2), 257-268. doi:10.1016/j.jcat.2011.01.019
Budarin, V. L., Shuttleworth, P. S., Dodson, J. R., Hunt, A. J., Lanigan, B., Marriott, R., … Clark, J. H. (2011). Use of green chemical technologies in an integrated biorefinery. Energy Environ. Sci., 4(2), 471-479. doi:10.1039/c0ee00184h
Hu, X., Wu, L., Wang, Y., Mourant, D., Lievens, C., Gunawan, R., & Li, C.-Z. (2012). Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. Green Chemistry, 14(11), 3087. doi:10.1039/c2gc35961h
Tomioka, K., Ishiguro, T., & Koga, K. (1979). Asymmetric total synthesis of the antileukaemic lignans (+)-trans-burseran and (–)-isostegane. J. Chem. Soc., Chem. Commun., (15), 652-653. doi:10.1039/c39790000652
Enders, D., Lausberg, V., Signore, G. D., & Berner, O. M. (2002). A General Approach to the Asymmetric Synthesis of Lignans: (-)-Methyl Piperitol, (-)-Sesamin, (-)-Aschantin, (+)-Yatein, (+)-Dihydroclusin, (+)-Burseran, and (-)-Isostegane. Synthesis, 2002(04), 515-522. doi:10.1055/s-2002-20967
Ehata, T., Ebata, T., Matsumoto, K., Yoshikoshi, H., Koseki, K., Kawakami, H., & Matsushita, H. (1990). Synthesis of (+)-trans-Whisky Lactone, (+)-trans-Cognac Lactone and (+)-Eldanolide. HETEROCYCLES, 31(9), 1585. doi:10.3987/com-90-5486
Kawakami, H., Ebata, T., Koseki, K., Matsumoto, K., Matsushita, H., Naoi, Y., & Itoh, K. (1990). Stereoselectivities in the Coupling Reaction between Silylated Pyrimidine Bases and 1-Halo-2,3-dideoxyribose. HETEROCYCLES, 31(11), 2041. doi:10.3987/com-90-5563
Flores, R., Rustullet, A., Alibés, R., Álvarez-Larena, A., March, P. de, Figueredo, M., & Font, J. (2011). Synthesis of Purine Nucleosides Built on a 3-Oxabicyclo[3.2.0]heptane Scaffold. The Journal of Organic Chemistry, 76(13), 5369-5383. doi:10.1021/jo200775x
Díaz-Rodríguez, A., Sanghvi, Y. S., Fernández, S., Schinazi, R. F., Theodorakis, E. A., Ferrero, M., & Gotor, V. (2009). Synthesis and anti-HIV activity of conformationally restricted bicyclic hexahydroisobenzofuran nucleoside analogs. Organic & Biomolecular Chemistry, 7(7), 1415. doi:10.1039/b818707j
Koseki, K., Ebata, T., Kawakami, H., Matsushita, H., Naoi, Y., & Itoh, K. (1990). A Method for Easy Preparation of Optically Pure (S)-5-Hydroxy-2-penten-4-olide and (S)-5-Hydroxypentan-4-olide. HETEROCYCLES, 31(3), 423. doi:10.3987/com-89-5300
Shafizadeh, F., Furneaux, R. H., & Stevenson, T. T. (1979). Some reactions of levoglucosenone. Carbohydrate Research, 71(1), 169-191. doi:10.1016/s0008-6215(00)86069-3
Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546
Corma, A., Domine, M. E., Nemeth, L., & Valencia, S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction). Journal of the American Chemical Society, 124(13), 3194-3195. doi:10.1021/ja012297m
BORONAT, M., CONCEPCION, P., CORMA, A., RENZ, M., & VALENCIA, S. (2005). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 234(1), 111-118. doi:10.1016/j.jcat.2005.05.023
Corma, A., Iborra, S., Mifsud, M., Renz, M., & Susarte, M. (2004). A New Environmentally Benign Catalytic Process for the Asymmetric Synthesis of Lactones: Synthesis of the Flavouringδ-Decalactone Molecule. Advanced Synthesis & Catalysis, 346(23), 257-262. doi:10.1002/adsc.200303234
Boronat, M., Corma, A., & Renz, M. (2006). Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts. The Journal of Physical Chemistry B, 110(42), 21168-21174. doi:10.1021/jp063249x
Román-Leshkov, Y., & Davis, M. E. (2011). Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 1(11), 1566-1580. doi:10.1021/cs200411d
Moliner, M., Roman-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. doi:10.1073/pnas.1002358107
Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie International Edition, 49(47), 8954-8957. doi:10.1002/anie.201004689
Nikolla, E., Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2011). «One-Pot» Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 1(4), 408-410. doi:10.1021/cs2000544
Lew, C. M., Rajabbeigi, N., & Tsapatsis, M. (2012). One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Industrial & Engineering Chemistry Research, 51(14), 5364-5366. doi:10.1021/ie2025536
Holm, M. S., Saravanamurugan, S., & Taarning, E. (2010). Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts. Science, 328(5978), 602-605. doi:10.1126/science.1183990
Gunther, W. R., Wang, Y., Ji, Y., Michaelis, V. K., Hunt, S. T., Griffin, R. G., & Román-Leshkov, Y. (2012). Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nature Communications, 3(1). doi:10.1038/ncomms2122
Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9
Corma, A., & Renz, M. (2004). Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl–ene reaction. Chem. Commun., (5), 550-551. doi:10.1039/b313738d
Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46(1-2), 298-300. doi:10.1002/anie.200604018
Treacy, M. M. J., & Newsam, J. M. (1988). Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature, 332(6161), 249-251. doi:10.1038/332249a0
Chang, C.-C., Wang, Z., Dornath, P., Je Cho, H., & Fan, W. (2012). Rapid synthesis of Sn-Beta for the isomerization of cellulosic sugars. RSC Advances, 2(28), 10475. doi:10.1039/c2ra21381h
Rabo, J. A. (1981). Unifying Principles in Zeolite Chemistry and Catalysis. Catalysis Reviews, 23(1-2), 293-313. doi:10.1080/03602458108068080
Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n
Kunkeler, P. J., Zuurdeeg, B. J., van der Waal, J. C., van Bokhoven, J. A., Koningsberger, D. C., & van Bekkum, H. (1998). Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of Catalysis, 180(2), 234-244. doi:10.1006/jcat.1998.2273
[-]