- -

Efficient Synthesis of 5-Chalcogenyl-1,3-oxazin-2-ones by Chalcogen-Mediated Yne Carbamate Cyclisation: An Experimental and Theoretical Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient Synthesis of 5-Chalcogenyl-1,3-oxazin-2-ones by Chalcogen-Mediated Yne Carbamate Cyclisation: An Experimental and Theoretical Study

Mostrar el registro completo del ítem

Monleón, A.; Blay, G.; Domingo, LR.; Muñoz Roca, MDC.; Pedro, JR. (2015). Efficient Synthesis of 5-Chalcogenyl-1,3-oxazin-2-ones by Chalcogen-Mediated Yne Carbamate Cyclisation: An Experimental and Theoretical Study. European Journal of Organic Chemistry. (5):1020-1027. https://doi.org/10.1002/ejoc.201403169

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67460

Ficheros en el ítem

Metadatos del ítem

Título: Efficient Synthesis of 5-Chalcogenyl-1,3-oxazin-2-ones by Chalcogen-Mediated Yne Carbamate Cyclisation: An Experimental and Theoretical Study
Autor: Monleón, Alicia Blay, Gonzalo Domingo, Luis R. Muñoz Roca, María del Carmen Pedro, José R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
A very efficient synthesis of 5-chalcogenyl-1,3-oxazin-2-ones has been accomplished by the chalcogen-mediated yne-carbamate cyclisation of chiral, non-racemic N-Cbz-protected propargylic amines using PhXY (X = Se, S, Te; ...[+]
Palabras clave: Cyclization , Regioselectivity , Nitrogen heterocycles , Chalcogens , Reaction mechanisms , Density functional calculations
Derechos de uso: Cerrado
Fuente:
European Journal of Organic Chemistry. (issn: 1434-193X ) (eissn: 1099-0690 )
DOI: 10.1002/ejoc.201403169
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/ejoc.201403169
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2009-13083/ES/Desarrollo de nuevos procesos enantioselectivos de formación de enlaces C-C mediante catálisis asimétrica/
info:eu-repo/grantAgreement/MINECO//CTQ2013-47494-P/ES/NUEVOS RETOS EN EL DESARROLLO DE PROCESOS ENANTIOSELECTIVOS DE FORMACION DE ENLACES C-C MEDIANTE CATALISIS DUAL COOPERATIVA./
info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F212/
info:eu-repo/grantAgreement/GVA//ISIC2012%2F001/
Agradecimientos:
Financial support from the Ministerio de Economia y Competitividad (MINECO), Gobierno de Espana, from the European Union (EU) (Fondos Europeos para el Desarrollo Regional (FEDER), grant numbers CTQ2009-13083 and CTQ2013-47494-P) ...[+]
Tipo: Artículo

References

Vauthey, I., Valot, F., Gozzi, C., Fache, F., & Lemaire, M. (2000). An environmentally benign access to carbamates and ureas. Tetrahedron Letters, 41(33), 6347-6350. doi:10.1016/s0040-4039(00)01051-0

DeBono, A. J., Xie, J. H., Ventura, S., Pouton, C. W., Capuano, B., & Scammells, P. J. (2012). Synthesis and Biological Evaluation ofN-Substituted Noscapine Analogues. ChemMedChem, 7(12), 2122-2133. doi:10.1002/cmdc.201200365

Singh, A., Ha, H.-J., Park, J., Kim, J. H., & Lee, W. K. (2011). 3,4-Disubstituted oxazolidin-2-ones as constrained ceramide analogs with anticancer activities. Bioorganic & Medicinal Chemistry, 19(21), 6174-6181. doi:10.1016/j.bmc.2011.09.022 [+]
Vauthey, I., Valot, F., Gozzi, C., Fache, F., & Lemaire, M. (2000). An environmentally benign access to carbamates and ureas. Tetrahedron Letters, 41(33), 6347-6350. doi:10.1016/s0040-4039(00)01051-0

DeBono, A. J., Xie, J. H., Ventura, S., Pouton, C. W., Capuano, B., & Scammells, P. J. (2012). Synthesis and Biological Evaluation ofN-Substituted Noscapine Analogues. ChemMedChem, 7(12), 2122-2133. doi:10.1002/cmdc.201200365

Singh, A., Ha, H.-J., Park, J., Kim, J. H., & Lee, W. K. (2011). 3,4-Disubstituted oxazolidin-2-ones as constrained ceramide analogs with anticancer activities. Bioorganic & Medicinal Chemistry, 19(21), 6174-6181. doi:10.1016/j.bmc.2011.09.022

Wolfe, A. L., Duncan, K. K., Parelkar, N. K., Weir, S. J., Vielhauer, G. A., & Boger, D. L. (2012). A Novel, Unusually Efficacious Duocarmycin Carbamate Prodrug That Releases No Residual Byproduct. Journal of Medicinal Chemistry, 55(12), 5878-5886. doi:10.1021/jm300330b

Taylor, R. D., MacCoss, M., & Lawson, A. D. G. (2014). Rings in Drugs. Journal of Medicinal Chemistry, 57(14), 5845-5859. doi:10.1021/jm4017625

Wu, T. T., Huang, J., Arrington, N. D., & Dill, G. M. (1987). Synthesis and herbicidal activity of .alpha.-heterocyclic carbinol carbamates. Journal of Agricultural and Food Chemistry, 35(5), 817-823. doi:10.1021/jf00077a044

Liu, M., Hashi, Y., Song, Y., & Lin, J.-M. (2005). Simultaneous determination of carbamate and organophosphorus pesticides in fruits and vegetables by liquid chromatography–mass spectrometry. Journal of Chromatography A, 1097(1-2), 183-187. doi:10.1016/j.chroma.2005.10.022

Jeschke, S., Gentschev, A.-C., & Wiemhöfer, H.-D. (2013). Disiloxanes with cyclic or non-cyclic carbamate moieties as electrolytes for lithium-ion batteries. Chemical Communications, 49(12), 1190. doi:10.1039/c2cc38326h

Pattarozzi, M., Zonta, C., Broxterman, Q. B., Kaptein, B., De Zorzi, R., Randaccio, L., … Licini, G. (2007). Stereoselective Iodocyclization of (S)-Allylalanine Derivatives:  γ-Lactone vs Cyclic Carbamate Formation. Organic Letters, 9(12), 2365-2368. doi:10.1021/ol070764k

Takeda, Y., Okumura, S., Tone, S., Sasaki, I., & Minakata, S. (2012). Cyclizative Atmospheric CO2Fixation by Unsaturated Amines witht-BuOI Leading to Cyclic Carbamates. Organic Letters, 14(18), 4874-4877. doi:10.1021/ol302201q

McElroy, C. R., Aricò, F., Benetollo, F., & Tundo, P. (2011). Cyclization reaction of amines with dialkyl carbonates to yield 1,3-oxazinan-2-ones. Pure and Applied Chemistry, 84(3), 707-719. doi:10.1351/pac-con-11-07-18

Wirth, T. (1999). Chiral selenium compounds in organic synthesis. Tetrahedron, 55(1), 1-28. doi:10.1016/s0040-4020(98)00946-6

Wirth, T. (2000). Organoselenium Chemistry in Stereoselective Reactions. Angewandte Chemie, 39(21), 3740-3749. doi:10.1002/1521-3773(20001103)39:21<3740::aid-anie3740>3.0.co;2-n

Braga, A., Lüdtke, D., Vargas, F., & Braga, R. (2006). Catalytic Applications of Chiral Organoselenium Compounds in Asymmetric Synthesis. Synlett, 2006(10), 1453-1466. doi:10.1055/s-2006-941592

Braga, A., Ludtke, D., & Vargas, F. (2006). Enantioselective Synthesis Mediated by Catalytic Chiral Organoselenium Compounds. Current Organic Chemistry, 10(15), 1921-1938. doi:10.2174/138527206778521204

Freudendahl, D. M., Shahzad, S. A., & Wirth, T. (2009). Recent Advances in Organoselenium Chemistry. European Journal of Organic Chemistry, 2009(11), 1649-1664. doi:10.1002/ejoc.200801171

Progress, in: organoselenium and organotellurium chemistry Tetrahedron Symposium-in-print Number 161 Tetrahedron 2012 68

Giles, G. I., Fry, F. H., Tasker, K. M., Holme, A. L., Peers, C., Green, K. N., … Jacob, C. (2003). Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential. Organic & Biomolecular Chemistry, 1(23), 4317. doi:10.1039/b308117f

Jamier, V., Ba, L. A., & Jacob, C. (2010). Selenium- and Tellurium-Containing Multifunctional Redox Agents as Biochemical Redox Modulators with Selective Cytotoxicity. Chemistry - A European Journal, 16(36), 10920-10928. doi:10.1002/chem.201000884

Piovan, L., Wu, L., Zhang, Z.-Y., & Andrade, L. H. (2011). Hypervalent organochalcogenanes as inhibitors of protein tyrosine phosphatases. Organic & Biomolecular Chemistry, 9(5), 1347. doi:10.1039/c0ob01050b

Doering, M., Diesel, B., Gruhlke, M. C. H., Viswanathan, U. M., Mániková, D., Chovanec, M., … Jacob, C. (2012). Selenium- and tellurium-containing redox modulators with distinct activity against macrophages: possible implications for the treatment of inflammatory diseases. Tetrahedron, 68(51), 10577-10585. doi:10.1016/j.tet.2012.09.021

Vargas, J., Narayanaperumal, S., Gul, K., Ravanello, B. B., Dornelles, L., Soares, L. C., … Rodrigues, O. E. D. (2012). Synthesis of chiral β-chalcogen amine derivatives and Gram-positive bacteria activity. Tetrahedron, 68(51), 10444-10448. doi:10.1016/j.tet.2012.09.049

Zhao, L., Li, J., Li, Y., Liu, J., Wirth, T., & Li, Z. (2012). Selenium-containing naphthalimides as anticancer agents: Design, synthesis and bioactivity. Bioorganic & Medicinal Chemistry, 20(8), 2558-2563. doi:10.1016/j.bmc.2012.02.049

Luesakul, U., Palaga, T., Krusong, K., Ngamrojanavanich, N., Vilaivan, T., Puthong, S., & Muangsin, N. (2014). Synthesis, cytotoxicity, DNA binding and topoisomerase II inhibition of cassiarin A derivatives. Bioorganic & Medicinal Chemistry Letters, 24(13), 2845-2850. doi:10.1016/j.bmcl.2014.04.107

Mukherjee, N., Chatterjee, T., & Ranu, B. C. (2013). Reaction under Ball-Milling: Solvent-, Ligand-, and Metal-Free Synthesis of Unsymmetrical Diaryl Chalcogenides. The Journal of Organic Chemistry, 78(21), 11110-11114. doi:10.1021/jo402071b

Prasad, C. D., Balkrishna, S. J., Kumar, A., Bhakuni, B. S., Shrimali, K., Biswas, S., & Kumar, S. (2013). Transition-Metal-Free Synthesis of Unsymmetrical Diaryl Chalcogenides from Arenes and Diaryl Dichalcogenides. The Journal of Organic Chemistry, 78(4), 1434-1443. doi:10.1021/jo302480j

Chatterjee, T., & Ranu, B. C. (2013). Solvent-Controlled Halo-Selective Selenylation of Aryl Halides Catalyzed by Cu(II) Supported on Al2O3. A General Protocol for the Synthesis of Unsymmetrical Organo Mono- and Bis-Selenides. The Journal of Organic Chemistry, 78(14), 7145-7153. doi:10.1021/jo401062k

Badsara, S. S., Liu, Y.-C., Hsieh, P.-A., Zeng, J.-W., Lu, S.-Y., Liu, Y.-W., & Lee, C.-F. (2014). Metal-free sp3C–H functionalization: a novel approach for the syntheses of selenide ethers and thioesters from methyl arenes. Chem. Commun., 50(77), 11374-11377. doi:10.1039/c4cc04503c

Yu, J.-T., Guo, H., Yi, Y., Fei, H., & Jiang, Y. (2014). The Chan-Lam Reaction of Chalcogen Elements Leading to Aryl Chalcogenides. Advanced Synthesis & Catalysis, 356(4), 749-752. doi:10.1002/adsc.201300853

Kundu, D., Ahammed, S., & Ranu, B. C. (2014). Visible Light Photocatalyzed Direct Conversion of Aryl-/Heteroarylamines to Selenides at Room Temperature. Organic Letters, 16(6), 1814-1817. doi:10.1021/ol500567t

Sanz, X., Vogels, C. M., Decken, A., Bo, C., Westcott, S. A., & Fernández, E. (2014). Face to face activation of a phenylselenium borane with α,β-unsaturated carbonyl substrates: facile synthesis of C–Se bonds. Chemical Communications, 50(61), 8420. doi:10.1039/c4cc02098g

Stefani, H. A., Leal, D. M., & Manarin, F. (2012). 4-Organochalcogenoyl-1H-1,2,3-triazoles: synthesis and functionalization by a nickel-catalyzed Negishi cross-coupling reaction. Tetrahedron Letters, 53(48), 6495-6499. doi:10.1016/j.tetlet.2012.09.062

Silveira, C. C., Mendes, S. R., Wolf, L., Martins, G. M., & von Mühlen, L. (2012). Efficient synthesis of 3-selanyl- and 3-sulfanylindoles employing trichloroisocyanuric acid and dichalcogenides. Tetrahedron, 68(51), 10464-10469. doi:10.1016/j.tet.2012.09.022

Savegnago, L., Vieira, A. I., Seus, N., Goldani, B. S., Castro, M. R., Lenardão, E. J., & Alves, D. (2013). Synthesis and antioxidant properties of novel quinoline–chalcogenium compounds. Tetrahedron Letters, 54(1), 40-44. doi:10.1016/j.tetlet.2012.10.067

Chen, Y., Cho, C.-H., Shi, F., & Larock, R. C. (2009). Synthesis of 3-Sulfenyl- and 3-Selenylindoles by the Pd/Cu-Catalyzed Coupling ofN,N-Dialkyl-2-iodoanilines and Terminal Alkynes, Followed byn-Bu4NI-Induced Electrophilic Cyclization. The Journal of Organic Chemistry, 74(17), 6802-6811. doi:10.1021/jo9014003

Du, H.-A., Tang, R.-Y., Deng, C.-L., Liu, Y., Li, J.-H., & Zhang, X.-G. (2011). Iron-Facilitated Iodine-Mediated Electrophilic Annulation of N,N-Dimethyl-2-alkynylanilines with Disulfides or Diselenides. Advanced Synthesis & Catalysis, 353(14-15), 2739-2748. doi:10.1002/adsc.201100349

Tao, L.-M., Liu, W.-Q., Zhou, Y., & Li, A.-T. (2012). Metal-free synthesis of 3-sulfenylindoles via an iodine-mediated electrophilic cyclisation of 2-alkynylanilines with disulfides. Journal of Chemical Research, 36(11), 644-646. doi:10.3184/174751912x13467835639963

Knight, D. W., Rost, H. C., Sharland, C. M., & Singkhonrat, J. (2007). A general approach to polysubstituted pyrroles. Tetrahedron Letters, 48(44), 7906-7910. doi:10.1016/j.tetlet.2007.08.097

Yoshida, M., Easmin, S., Al-Amin, M., Hirai, Y., & Shishido, K. (2011). Synthesis of substituted 3-iodopyrroles by cycloisomerization of propargylic aziridines with iodine. Tetrahedron, 67(18), 3194-3200. doi:10.1016/j.tet.2011.03.015

Lamaty, F., Spina, R., Colacino, E., Gabriele, B., Salerno, G., & Martinez, J. (2012). Electrophilic Iodo-Mediated Cyclization in PEG under Microwave Irradiation: Easy Access to Highly Functionalized Furans and Pyrroles. Synlett, 23(10), 1481-1484. doi:10.1055/s-0031-1291012

Arcadi, A., Cacchi, S., Fabrizi, G., Marinelli, F., & Moro, L. (1999). A New Approach to 2,3-Disubstituted Benzo[b]furans from o-Alkynylphenols via 5-endo-dig-Iodocyclisation/Palladium-Catalysed Reactions. Synlett, 1999(9), 1432-1434. doi:10.1055/s-1999-2839

Manarin, F., Roehrs, J. A., Gay, R. M., Brandão, R., Menezes, P. H., Nogueira, C. W., & Zeni, G. (2009). Electrophilic Cyclization of 2-Chalcogenealkynylanisoles: Versatile Access to 2-Chalcogen-benzo[b]furans. The Journal of Organic Chemistry, 74(5), 2153-2162. doi:10.1021/jo802736e

Gay, R. M., Manarin, F., Schneider, C. C., Barancelli, D. A., Costa, M. D., & Zeni, G. (2010). FeCl3-Diorganyl Dichalcogenides Promoted Cyclization of 2-Alkynylanisoles to 3-Chalcogen Benzo[b]furans. The Journal of Organic Chemistry, 75(16), 5701-5706. doi:10.1021/jo101126q

Xu, M., Zhang, X.-H., & Zhong, P. (2011). Metal-free synthesis of 3-chalcogen benzo[b]furans via an iodine-mediated electrophilic cyclisation of 2-alkynylanisoles. Tetrahedron Letters, 52(50), 6800-6804. doi:10.1016/j.tetlet.2011.10.045

Okitsu, T., Nakata, K., Nishigaki, K., Michioka, N., Karatani, M., & Wada, A. (2014). Iodocyclization of Ethoxyethyl Ethers to Ynamides: An Immediate Construction to Benzo[b]furans. The Journal of Organic Chemistry, 79(12), 5914-5920. doi:10.1021/jo500903y

Cho, C.-H., Neuenswander, B., & Larock, R. C. (2010). Diverse Methyl Sulfone-Containing Benzo[b]thiophene Library via Iodocyclization and Palladium-Catalyzed Coupling. Journal of Combinatorial Chemistry, 12(2), 278-285. doi:10.1021/cc900172u

Sanz, R., Guilarte, V., Hernando, E., & Sanjuán, A. M. (2010). Synthesis of Regioselectively Functionalized Benzo[b]thiophenes by Combinedortho-Lithiation−Halocyclization Strategies. The Journal of Organic Chemistry, 75(21), 7443-7446. doi:10.1021/jo101436f

Kesharwani, T., Worlikar, S. A., & Larock, R. C. (2006). Synthesis of 2,3-Disubstituted Benzo[b]selenophenes via Electrophilic Cyclization. The Journal of Organic Chemistry, 71(6), 2307-2312. doi:10.1021/jo0524268

Flynn, B. L., Flynn, G. P., Hamel, E., & Jung, M. K. (2001). The synthesis and tubulin binding activity of thiophene-based analogues of combretastatin A-4. Bioorganic & Medicinal Chemistry Letters, 11(17), 2341-2343. doi:10.1016/s0960-894x(01)00436-x

Gabriele, B., Mancuso, R., Salerno, G., & Larock, R. C. (2012). An Iodocyclization Approach to Substituted 3-Iodothiophenes. The Journal of Organic Chemistry, 77(17), 7640-7645. doi:10.1021/jo301001j

Kaur, P., Singh, P., & Kumar, S. (2005). Regio- and stereochemical aspects in synthesis of 2-allyl derivatives of glycolic, mandelic and lactic acids and their iodocyclisations to 3-hydroxy-3,4-dihydrofuran-2(5H)-ones. Tetrahedron, 61(34), 8231-8240. doi:10.1016/j.tet.2005.06.045

Bew, S. P., El-Taeb, G. M. M., Jones, S., Knight, D. W., & Tan, W.-F. (2007). Expedient Syntheses of β-Iodofurans by 5-endo-dig Cyclisations. European Journal of Organic Chemistry, 2007(34), 5759-5770. doi:10.1002/ejoc.200700681

Crone, B., & Kirsch, S. F. (2007). Synthesis of 4-Iodo-3-furanones Utilizing Electrophile-Induced Tandem Cyclization/1,2-Migration Reactions. The Journal of Organic Chemistry, 72(14), 5435-5438. doi:10.1021/jo070695n

Cho, C.-H., & Larock, R. C. (2010). A convenient synthetic route to furan esters and lactones by palladium-catalyzed carboalkoxylation or cyclocarbonylation of hydroxyl-substituted 3-iodofurans. Tetrahedron Letters, 51(26), 3417-3421. doi:10.1016/j.tetlet.2010.04.108

Chen, Z., Huang, G., Jiang, H., Huang, H., & Pan, X. (2011). Synthesis of 2,5-Disubstituted 3-Iodofurans via Palladium-Catalyzed Coupling and Iodocyclization of Terminal Alkynes. The Journal of Organic Chemistry, 76(4), 1134-1139. doi:10.1021/jo1023987

Worlikar, S. A., Kesharwani, T., Yao, T., & Larock, R. C. (2007). Synthesis of 3,4-Disubstituted 2H-Benzopyrans through C−C Bond Formation via Electrophilic Cyclization. The Journal of Organic Chemistry, 72(4), 1347-1353. doi:10.1021/jo062234s

Godoi, B., Sperança, A., Back, D. F., Brandão, R., Nogueira, C. W., & Zeni, G. (2009). Synthesis of Organochalcogen Propargyl Aryl Ethers and Their Application in the Electrophilic Cyclization Reaction: An Efficient Preparation of 3-Halo-4-Chalcogen-2H-Benzopyrans. The Journal of Organic Chemistry, 74(9), 3469-3477. doi:10.1021/jo900307k

Monleón, A., Blay, G., Domingo, L. R., Muñoz, M. C., & Pedro, J. R. (2013). Synthesis of Densely Functionalised 5-Halogen-1,3-oxazin-2-ones by Halogen-Mediated Regioselective Cyclisation ofN-Cbz-Protected Propargylic Amines: A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 19(44), 14852-14860. doi:10.1002/chem.201302089

Bian, M., Yao, W., Ding, H., & Ma, C. (2010). Highly Efficient Access to Iminoisocoumarins and α-Iminopyrones via AgOTf-Catalyzed Intramolecular Enyne−Amide Cyclization. The Journal of Organic Chemistry, 75(1), 269-272. doi:10.1021/jo9023478

Bukšnaitienė, R., Urbanaitė, A., & Čikotienė, I. (2014). Formation of Condensed 1H-Pyrrol-2-ylphosphonates and 1,2-Dihydropyridin-2-ylphosphonates via Kabachnik–Fields Reaction of Acetylenic Aldehydes and Subsequent 5-exo-digor 6-endo-digCyclizations. The Journal of Organic Chemistry, 79(14), 6532-6553. doi:10.1021/jo501011u

Robles-Machín, R., Adrio, J., & Carretero, J. C. (2006). Gold-Catalyzed Synthesis of Alkylidene 2-Oxazolidinones and 1,3-Oxazin-2-ones. The Journal of Organic Chemistry, 71(13), 5023-5026. doi:10.1021/jo060520y

Alamsetti, S. K., Persson, A. K. Å., & Bäckvall, J.-E. (2014). Palladium-Catalyzed Intramolecular Hydroamination of Propargylic Carbamates and Carbamothioates. Organic Letters, 16(5), 1434-1437. doi:10.1021/ol5002279

Campbell, M. J., & Toste, F. D. (2011). Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(i) catalyst. Chemical Science, 2(7), 1369. doi:10.1039/c1sc00160d

Blay, G., Brines, A., Monleón, A., & Pedro, J. R. (2012). Enantioselective Zinc/BINOL-Catalysed Alkynylation of Aldimines Generated in Situ from α-Amido Sulfones. Chemistry - A European Journal, 18(8), 2440-2444. doi:10.1002/chem.201102909

Hamel, P. (2002). Mechanism of the Second Sulfenylation of Indole. The Journal of Organic Chemistry, 67(9), 2854-2858. doi:10.1021/jo0109220

Tucci, F. C., Chieffi, A., Comasseto, J. V., & Marino, J. P. (1996). Tellurium in Organic Synthesis. Preparation ofZ-Vinylic Cuprates fromZ-Vinylic Tellurides and Their Reaction with Enones and Epoxides. The Journal of Organic Chemistry, 61(15), 4975-4989. doi:10.1021/jo951547c

6a n 22 17 3 M r P 1 1 1 a b c V 3 Z ρ calcd. -3 μ -1 F 3 R K α λ F 2 [37] R wR R wR www.ccdc.cam.ac.uk/data_request/cif

Gai, B. M., Stein, A. L., Roehrs, J. A., Bilheri, F. N., Nogueira, C. W., & Zeni, G. (2012). Synthesis and antidepressant-like activity of selenophenes obtained viairon(iii)–PhSeSePh-mediated cyclization of Z-selenoenynes. Org. Biomol. Chem., 10(4), 798-807. doi:10.1039/c1ob06548c

Domingo, L. R., Pérez, P., & Sáez, J. A. (2013). Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv., 3(5), 1486-1494. doi:10.1039/c2ra22886f

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3(2), 214-218. doi:10.1002/jcc.540030212

Fukui, K. (1970). Formulation of the reaction coordinate. The Journal of Physical Chemistry, 74(23), 4161-4163. doi:10.1021/j100717a029

Gonzalez, C., & Schlegel, H. B. (1990). Reaction path following in mass-weighted internal coordinates. The Journal of Physical Chemistry, 94(14), 5523-5527. doi:10.1021/j100377a021

Gonzalez, C., & Schlegel, H. B. (1991). Improved algorithms for reaction path following: Higher‐order implicit algorithms. The Journal of Chemical Physics, 95(8), 5853-5860. doi:10.1063/1.461606

Tomasi, J., & Persico, M. (1994). Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chemical Reviews, 94(7), 2027-2094. doi:10.1021/cr00031a013

Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107(8), 3032-3041. doi:10.1063/1.474659

Cossi, M., Barone, V., Cammi, R., & Tomasi, J. (1996). Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4-6), 327-335. doi:10.1016/0009-2614(96)00349-1

Barone, V., Cossi, M., & Tomasi, J. (1998). Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19(4), 404-417. doi:10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w

Gaussian 09 2009

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem