- -

Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

Mostrar el registro completo del ítem

Primo Arnau, AM.; Neatu, F.; Florea, M.; Parvulescu, V.; García Gómez, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications. 5:1-9. https://doi.org/10.1038/ncomms6291

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67513

Ficheros en el ítem

Metadatos del ítem

Título: Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation
Autor: Primo Arnau, Ana María Neatu, Florentina Florea, Mihaela Parvulescu, Vasile García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction ...[+]
Palabras clave: FRUSTRATED LEWIS PAIRS , GRAPHITE OXIDE , ACTIVATED CARBON , REDUCTION , CATALYSIS; OXIDATION , GRAPHANE , TEMPERATURE , IMPURITIES , EFFICIENT
Derechos de uso: Reserva de todos los derechos
Fuente:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms6291
Editorial:
Nature Publishing Group
Versión del editor: http://dx.doi.org/10.1038/ncomms6291
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F021/ES/
Agradecimientos:
This study was financially supported by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315); and Generalidad Valenciana (Prometeo 21/013) is gratefully acknowledged.
Tipo: Artículo

References

Dreyer, D. R. & Bielawski, C. W. Carbocatalysis: heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011).

Machado, B. F. & Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012).

Schaetz, A., Zeltner, M. & Stark, W. J. Carbon modifications and surfaces for catalytic organic transformations. ACS Catal. 2, 1267–1284 (2012). [+]
Dreyer, D. R. & Bielawski, C. W. Carbocatalysis: heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011).

Machado, B. F. & Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012).

Schaetz, A., Zeltner, M. & Stark, W. J. Carbon modifications and surfaces for catalytic organic transformations. ACS Catal. 2, 1267–1284 (2012).

Su, D. S. et al. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3, 169–180 (2010).

Chauhan, S. M. S. & Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules 16, 7256–7266 (2011).

Dreyer, D. R., Jarvis, K. A., Ferreira, P. J. & Bielawski, C. W. Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polym. Chem. 3, 757–766 (2012).

Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

Pyun, J. Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed. 50, 46–48 (2011).

Rourke, J. P. et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011).

Sun, H. et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interf. 4, 5466–5471 (2012).

Dreyer, D. R., Jia, H. P. & Bielawski, C. W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010).

Dreyer, D. R., Jia, H. P., Todd, A. D., Geng, J. X. & Bielawski, C. W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem. 9, 7292–7295 (2011).

Hayashi, M. Oxidation using activated carbon and molecular oxygen system. Chem. Rec. 8, 252–267 (2008).

Jia, H. P., Dreyer, D. R. & Bielawski, C. W. C-H oxidation using graphite oxide. Tetrahedron 67, 4431–4434 (2011).

Kumar, A. V. & Rao, K. R. Recyclable graphite oxide catalyzed Friedel-Crafts addition of indoles to alpha, beta-unsaturated ketones. Tetrahedron Lett. 52, 5188–5191 (2011).

Soria-Sanchez, M. et al. Carbon nanostructure materials as direct catalysts for phenol oxidation in aqueous phase. Appl. Catal. B Environ. 104, 101–109 (2011).

Verma, S. et al. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47, 12673–12675 (2011).

Yu, H. et al. Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide. Chem. Phys. Lett. 583, 146–150 (2013).

Holschumacher, D., Bannenberg, T., Hrib, C. G., Jones, P. G. & Tamm, M. Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. Angew. Chem. Int. Ed. 47, 7428–7432 (2008).

Staubitz, A., Robertson, A. P. M., Sloan, M. E. & Manners, I. Amine- and phosphine-borane adducts: new interest in old molecules. Chem. Rev. 110, 4023–4078 (2010).

Stephan, D. W. & Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int. Ed. 49, 46–76 (2010).

Poh, H. L., Sanek, F., Sofer, Z. & Pumera, M. High-pressure hydrogenation of graphene: towards graphane. Nanoscale 4, 7006–7011 (2012).

Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: A two-dimensional hydrocarbon. J. Phys. Chem. B 75, 153401 (2007).

Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

Despiau-Pujo, E. et al. Elementary processes of H2 plasma-graphene interaction: a combined molecular dynamics and density functional theory study. J. Appl. Phys. 113, 114302 (2013).

Xu, L. & Ge, Q. Effects of defects and dopants in graphene on hydrogen interaction in graphene-supported NaAlH4. Int. J. Hydrogen Energy 38, 3670–3680 (2013).

Perhun, T. I., Bychko, I. B., Trypolsky, A. I. & Strizhak, P. E. Catalytic properties of graphene material in the hydrogenation of ethylene. Theor. Exp. Chem. 48, 367–370 (2013).

Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M. & Garcia, H. Doped graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrene. Chem. Eur. J. 19, 7547–7554 (2013).

Latorre-Sanchez, M., Primo, A. & Garcia, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew. Chem. Int. Ed. 52, 11813–11816 (2013).

Primo, A., Sanchez, E., Delgado, J. M. & Garcia, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon N. Y. 68, 777–783 (2014).

Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 45, 1558–1565 (2007).

Pumera, M. & Wong, C. H. A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 42, 5987–5995 (2013).

Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008).

Bridier, B., Lopez, N. & Perez-Ramirez, J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans. 39, 8412–8419 (2010).

Flick, K., Herion, C. & Allmann, H. Palladium-haltiger Trägerkatalysator zur selektiven katalytischen Hydrierung von Acetylen in Kohlenwasserstoffströmen. EP764463-A; EP764463-A2; DE19535402-A1; JP9141097-A; CA2185721-A; KR97014834-A; MX9604031-A1; US5847250-A; US5856262-A; TW388722-A; MX195137-B; CN1151908-A; EP764463-B1; DE59610365-G; ES2197222-T3; KR418161-B; CN1081487-C; JP3939787-B2; CA2185721-C (1997).

Gartside, R. J. et al. Improved olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps. WO2005080530-A1; EP1711581-A1; BR200418414-A; MX2006008045-A1; JP2007518864-W; KR2007005565-A; CN1961059-A; IN200604063-P1; KR825662-B1; JP4376908-B2; CA2553962-C; IN251202-B; SG124072-A1; SG124072-B; CN1961059-B (2005).

Wegerer, D. A., Bussche, K. V. & Vandenbussche, K. M. Selective Co oxidation for acetylene converter feed Co CONTROL. US2012294774-A1; US8431094-B2 (2102).

Chernichenko, K. et al. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 5, 718–723 (2013).

Vile, G., Bridier, B., Wichert, J. & Perez-Ramirez, J. Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew. Chem. Int. Ed. 51, 8620–8623 (2012).

Ambrosi, A. et al. Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51, 500–503 (2012).

Ambrosi, A. et al. Chemical reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proc. Natl Acad. Sci. USA 109, 12899–12904 (2012).

Vile, G., Almora-Barrios, N., Mitchell, S., Lopez, N. & Perez-Ramirez, J. From the lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chemistry 20, 5849–5849 (2014).

Gurrath, M. et al. Palladium catalysts on activated carbon supports—Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon N. Y. 38, 1241–1255 (2000).

Stephan, D. W. ‘Frustrated Lewis pairs’: a concept for new reactivity and catalysis. Org. Biomol. Chem. 6, 1535–1539 (2008).

Stephan, D. W. Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans. 17, 3129–3136 (2009).

Chase, P. A., Jurca, T. & Stephan, D. W. Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem. Commun. 14, 1701–1703 (2008).

Hounjet, L. J. & Stephan, D. W. Hydrogenation by frustrated Lewis pairs: main group alternatives to transition metal catalysts? Org. Process Res. Dev. 18, 385–391 (2014).

Spies, P. et al. Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew. Chem. Int. Ed. 47, 7543–7546 (2008).

Greb, L. et al. Metal-free catalytic olefin hydrogenation: low-temperature H2 activation by frustrated Lewis pairs. Angew. Chem. Int. Ed. 51, 10164–10168 (2012).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem