- -

Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Neatu, Florentina es_ES
dc.contributor.author Florea, Mihaela es_ES
dc.contributor.author Parvulescu, Vasile es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-07-13T07:30:50Z
dc.date.available 2016-07-13T07:30:50Z
dc.date.issued 2014-10
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/67513
dc.description.abstract Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene. es_ES
dc.description.sponsorship This study was financially supported by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315); and Generalidad Valenciana (Prometeo 21/013) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject FRUSTRATED LEWIS PAIRS es_ES
dc.subject GRAPHITE OXIDE es_ES
dc.subject ACTIVATED CARBON es_ES
dc.subject REDUCTION es_ES
dc.subject CATALYSIS; OXIDATION es_ES
dc.subject GRAPHANE es_ES
dc.subject TEMPERATURE es_ES
dc.subject IMPURITIES es_ES
dc.subject EFFICIENT es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms6291
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F021/ES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Primo Arnau, AM.; Neatu, F.; Florea, M.; Parvulescu, V.; García Gómez, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications. 5:1-9. https://doi.org/10.1038/ncomms6291 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms6291 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.relation.senia 285495 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana
dc.description.references Dreyer, D. R. & Bielawski, C. W. Carbocatalysis: heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2, 1233–1240 (2011). es_ES
dc.description.references Machado, B. F. & Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012). es_ES
dc.description.references Schaetz, A., Zeltner, M. & Stark, W. J. Carbon modifications and surfaces for catalytic organic transformations. ACS Catal. 2, 1267–1284 (2012). es_ES
dc.description.references Su, D. S. et al. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3, 169–180 (2010). es_ES
dc.description.references Chauhan, S. M. S. & Mishra, S. Use of graphite oxide and graphene oxide as catalysts in the synthesis of dipyrromethane and calix[4]pyrrole. Molecules 16, 7256–7266 (2011). es_ES
dc.description.references Dreyer, D. R., Jarvis, K. A., Ferreira, P. J. & Bielawski, C. W. Graphite oxide as a carbocatalyst for the preparation of fullerene-reinforced polyester and polyamide nanocomposites. Polym. Chem. 3, 757–766 (2012). es_ES
dc.description.references Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). es_ES
dc.description.references Pyun, J. Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew. Chem. Int. Ed. 50, 46–48 (2011). es_ES
dc.description.references Rourke, J. P. et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50, 3173–3177 (2011). es_ES
dc.description.references Sun, H. et al. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl. Mater. Interf. 4, 5466–5471 (2012). es_ES
dc.description.references Dreyer, D. R., Jia, H. P. & Bielawski, C. W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew. Chem. Int. Ed. 49, 6813–6816 (2010). es_ES
dc.description.references Dreyer, D. R., Jia, H. P., Todd, A. D., Geng, J. X. & Bielawski, C. W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides. Org. Biomol. Chem. 9, 7292–7295 (2011). es_ES
dc.description.references Hayashi, M. Oxidation using activated carbon and molecular oxygen system. Chem. Rec. 8, 252–267 (2008). es_ES
dc.description.references Jia, H. P., Dreyer, D. R. & Bielawski, C. W. C-H oxidation using graphite oxide. Tetrahedron 67, 4431–4434 (2011). es_ES
dc.description.references Kumar, A. V. & Rao, K. R. Recyclable graphite oxide catalyzed Friedel-Crafts addition of indoles to alpha, beta-unsaturated ketones. Tetrahedron Lett. 52, 5188–5191 (2011). es_ES
dc.description.references Soria-Sanchez, M. et al. Carbon nanostructure materials as direct catalysts for phenol oxidation in aqueous phase. Appl. Catal. B Environ. 104, 101–109 (2011). es_ES
dc.description.references Verma, S. et al. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47, 12673–12675 (2011). es_ES
dc.description.references Yu, H. et al. Solvent-free catalytic dehydrative etherification of benzyl alcohol over graphene oxide. Chem. Phys. Lett. 583, 146–150 (2013). es_ES
dc.description.references Holschumacher, D., Bannenberg, T., Hrib, C. G., Jones, P. G. & Tamm, M. Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. Angew. Chem. Int. Ed. 47, 7428–7432 (2008). es_ES
dc.description.references Staubitz, A., Robertson, A. P. M., Sloan, M. E. & Manners, I. Amine- and phosphine-borane adducts: new interest in old molecules. Chem. Rev. 110, 4023–4078 (2010). es_ES
dc.description.references Stephan, D. W. & Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int. Ed. 49, 46–76 (2010). es_ES
dc.description.references Poh, H. L., Sanek, F., Sofer, Z. & Pumera, M. High-pressure hydrogenation of graphene: towards graphane. Nanoscale 4, 7006–7011 (2012). es_ES
dc.description.references Sofo, J. O., Chaudhari, A. S. & Barber, G. D. Graphane: A two-dimensional hydrocarbon. J. Phys. Chem. B 75, 153401 (2007). es_ES
dc.description.references Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009). es_ES
dc.description.references Despiau-Pujo, E. et al. Elementary processes of H2 plasma-graphene interaction: a combined molecular dynamics and density functional theory study. J. Appl. Phys. 113, 114302 (2013). es_ES
dc.description.references Xu, L. & Ge, Q. Effects of defects and dopants in graphene on hydrogen interaction in graphene-supported NaAlH4. Int. J. Hydrogen Energy 38, 3670–3680 (2013). es_ES
dc.description.references Perhun, T. I., Bychko, I. B., Trypolsky, A. I. & Strizhak, P. E. Catalytic properties of graphene material in the hydrogenation of ethylene. Theor. Exp. Chem. 48, 367–370 (2013). es_ES
dc.description.references Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). es_ES
dc.description.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M. & Garcia, H. Doped graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic hydrocarbons, cyclooctane and styrene. Chem. Eur. J. 19, 7547–7554 (2013). es_ES
dc.description.references Latorre-Sanchez, M., Primo, A. & Garcia, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew. Chem. Int. Ed. 52, 11813–11816 (2013). es_ES
dc.description.references Primo, A., Sanchez, E., Delgado, J. M. & Garcia, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon N. Y. 68, 777–783 (2014). es_ES
dc.description.references Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N. Y. 45, 1558–1565 (2007). es_ES
dc.description.references Pumera, M. & Wong, C. H. A. Graphane and hydrogenated graphene. Chem. Soc. Rev. 42, 5987–5995 (2013). es_ES
dc.description.references Teschner, D. et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320, 86–89 (2008). es_ES
dc.description.references Bridier, B., Lopez, N. & Perez-Ramirez, J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans. 39, 8412–8419 (2010). es_ES
dc.description.references Flick, K., Herion, C. & Allmann, H. Palladium-haltiger Trägerkatalysator zur selektiven katalytischen Hydrierung von Acetylen in Kohlenwasserstoffströmen. EP764463-A; EP764463-A2; DE19535402-A1; JP9141097-A; CA2185721-A; KR97014834-A; MX9604031-A1; US5847250-A; US5856262-A; TW388722-A; MX195137-B; CN1151908-A; EP764463-B1; DE59610365-G; ES2197222-T3; KR418161-B; CN1081487-C; JP3939787-B2; CA2185721-C (1997). es_ES
dc.description.references Gartside, R. J. et al. Improved olefin plant recovery system employing a combination of catalytic distillation and fixed bed catalytic steps. WO2005080530-A1; EP1711581-A1; BR200418414-A; MX2006008045-A1; JP2007518864-W; KR2007005565-A; CN1961059-A; IN200604063-P1; KR825662-B1; JP4376908-B2; CA2553962-C; IN251202-B; SG124072-A1; SG124072-B; CN1961059-B (2005). es_ES
dc.description.references Wegerer, D. A., Bussche, K. V. & Vandenbussche, K. M. Selective Co oxidation for acetylene converter feed Co CONTROL. US2012294774-A1; US8431094-B2 (2102). es_ES
dc.description.references Chernichenko, K. et al. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nat. Chem. 5, 718–723 (2013). es_ES
dc.description.references Vile, G., Bridier, B., Wichert, J. & Perez-Ramirez, J. Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew. Chem. Int. Ed. 51, 8620–8623 (2012). es_ES
dc.description.references Ambrosi, A. et al. Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51, 500–503 (2012). es_ES
dc.description.references Ambrosi, A. et al. Chemical reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proc. Natl Acad. Sci. USA 109, 12899–12904 (2012). es_ES
dc.description.references Vile, G., Almora-Barrios, N., Mitchell, S., Lopez, N. & Perez-Ramirez, J. From the lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chemistry 20, 5849–5849 (2014). es_ES
dc.description.references Gurrath, M. et al. Palladium catalysts on activated carbon supports—Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon N. Y. 38, 1241–1255 (2000). es_ES
dc.description.references Stephan, D. W. ‘Frustrated Lewis pairs’: a concept for new reactivity and catalysis. Org. Biomol. Chem. 6, 1535–1539 (2008). es_ES
dc.description.references Stephan, D. W. Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans. 17, 3129–3136 (2009). es_ES
dc.description.references Chase, P. A., Jurca, T. & Stephan, D. W. Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. Chem. Commun. 14, 1701–1703 (2008). es_ES
dc.description.references Hounjet, L. J. & Stephan, D. W. Hydrogenation by frustrated Lewis pairs: main group alternatives to transition metal catalysts? Org. Process Res. Dev. 18, 385–391 (2014). es_ES
dc.description.references Spies, P. et al. Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew. Chem. Int. Ed. 47, 7543–7546 (2008). es_ES
dc.description.references Greb, L. et al. Metal-free catalytic olefin hydrogenation: low-temperature H2 activation by frustrated Lewis pairs. Angew. Chem. Int. Ed. 51, 10164–10168 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem