- -

Photobiocatalytic chemistry of oxidoreductases using water as the electron donor

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Photobiocatalytic chemistry of oxidoreductases using water as the electron donor

Show full item record

Mifsud Grau, M.; Gargiulo, S.; Iborra Chornet, S.; Arends, IWCE.; Hollmann, F.; Corma Canós, A. (2014). Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications. 5:1-6. doi:10.1038/ncomms4145

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67516

Files in this item

Item Metadata

Title: Photobiocatalytic chemistry of oxidoreductases using water as the electron donor
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] To date, water has been poorly studied as the sacrificial electron donor for biocatalytic redox reactions using isolated enzymes. Here we demonstrate that water can also be turned into a sacrificial electron donor to ...[+]
Subjects: Domain Cytochrome P450BM3 , Photsystem-II , Horseradish-peroxidase , Nicotinamide coenzymes , Biocatalytic oxidation , Direct regeneration , Reduction , Epoxidation , Catalyst , Monooxygenase
Copyrigths: Reserva de todos los derechos
Source:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms4145
Publisher:
Nature Publishing Group
Publisher version: http://dx.doi.org/10.1038/ncomms4145
Project ID: info:eu-repo/grantAgreement/EC/FP7/238531/EU
Thanks:
Financial support from the Spanish Science and Innovation Ministry (Consolider Ingenio 2010-MULTICAT CSD 2009-00050, Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267). M. M. acknowledges ...[+]
Type: Artículo

References

Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004).

Pollard, D. J. & Woodley, J. M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 25, 66–73 (2007). [+]
Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004).

Pollard, D. J. & Woodley, J. M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 25, 66–73 (2007).

Ran, N., Zhao, L., Chen, Z. & Tao, J. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green. Chem. 10, 361–372 (2008).

Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

Schmid, A., Hollmann, F., Park, J. B. & Bühler, B. The use of enzymes in the chemical industry in Europe. Curr. Opin. Biotechnol. 13, 359–366 (2002).

Schoemaker, H. E., Mink, D. & Wubbolts, M. G. Dispelling the myths-biocatalysis in industrial synthesis. Science 299, 1694–1697 (2003).

Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).

Drauz K., Gröger H., May O. (eds)Enzyme Catalysis in Organic Synthesis Wiley-VCH: Weinheim, (2012).

Weckbecker, A., Gröger, H. & Hummel, W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. inBiosystems Engineering I: Creating Superior Biocatalysts pp195–242Springer: Berlin, (2010).

van der Donk, W. A. & Zhao, H. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14, 421–426 (2003).

Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green. Chem. 15, 1773–1789 (2013).

Rodriguez, C., Lavandera, I. & Gotor, V. Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes. Curr. Org. Chem. 16, 2525–2541 (2012).

Reipa, V., Mayhew, M. P. & Vilker, V. L. A direct electrode-driven P450 cycle for biocatalysis. Proc. Natl Acad. Sci. USA 94, 13554–13558 (1997).

Bernard, J., van Heerden, E., Arends, I. W. C. E., Opperman, D. J. & Hollmann, F. Chemoenzymatic reduction of conjugated C=C double bonds. Chem. Cat. Chem. 4, 196–199 (2012).

Hollmann, F., Arends, I. W. C. E. & Bühler, K. Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. Chem. Cat. Chem. 2, 762–782 (2010).

Hollmann, F., Hofstetter, K., Habicher, T., Hauer, B. & Schmid, A. Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation. J. Am. Chem. Soc. 127, 6540–6541 (2005).

Hollmann, F., Lin, P.-C., Witholt, B. & Schmid, A. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a fad-dependent monooxygenase for catalysis. J. Am. Chem. Soc. 125, 8209–8217 (2003).

Hollmann, F. & Schmid, A. Towards [Cp*Rh(bpy)(H2O)]2+-promoted P450 catalysis: direct regeneration of CytC. J. Inorg. Biochem. 103, 313–315 (2009).

Hollmann, F., Taglieber, A., Schulz, F. & Reetz, M. T. A light-driven stereoselective biocatalytic oxidation. Angew. Chem. Int. Ed. 46, 2903–2906 (2007).

Mifsud Grau, M. et al. Photoenzymatic reduction of C=C double bonds. Adv. Synth. Catal. 351, 3279–3286 (2009).

Ruinatscha, R., Dusny, C., Buehler, K. & Schmid, A. Productive asymmetric styrene epoxidation based on a next generation electroenzymatic methodology. Adv. Synth. Catal. 351, 2505–2515 (2009).

Schwaneberg, U., Appel, D., Schmitt, J. & Schmid, R. D. P450 in biotechnology: zinc driven ω-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. J. Biotechnol. 84, 249–257 (2000).

Taglieber, A., Schulz, F., Hollmann, F., Rusek, M. & Reetz, M. T. Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. Chem. Bio. Chem. 9, 565–572 (2008).

Udit, A. K., Arnold, F. H. & Gray, H. B. Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450 BM3. J. Inorg. Biochem. 98, 1547–1550 (2004).

Udit, A. K., Hill, M. G., Bittner, V. G., Arnold, F. H. & Gray, H. B. Reduction of dioxygen catalyzed by pyrene-wired heme domain cytochrome p450 bm3 electrodes. J. Am. Chem. Soc. 126, 10218–10219 (2004).

Unversucht, S., Hollmann, F., Schmid, A. & van Pée, K.-H. FADH2-Dependence of Tryptophan 7-Halogenase. Adv. Synth. Catal. 347, 1163–1167 (2005).

Zilly, F. E., Taglieber, A., Schulz, F., Hollmann, F. & Reetz, M. T. Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem. Commun. 7152–7154 (2009).

Yehezkeli, O. et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3, 742 (2012).

Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).

Dau, H., Zaharieva, I. & Haumann, M. Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol. 16, 3–10 (2012).

Qu, Y. & Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013).

Takanabe, K. & Domen, K. Preparation of inorganic photocatalytic materials for overall water splitting. Chem. Cat. Chem. 4, 1485–1497 (2012).

Wee, T.-L. et al. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133, 16742–16745 (2011).

Cargnello, M. & Fornasiero, P. Photocatalysis by nanostructured TiO2 based semiconductors. inHandbook of Green Chemistry, Green Nanoscience (eds Selva M., Perosa A. Wiley-VCH: Weinheim, (2010).

Liu, S. Q. & Chen, A. C. Coadsorption of horseradish peroxidase with thionine on TiO2: Nanotubes for biosensing. Langmuir 21, 8409–8413 (2005).

Zhang, Y., He, P. L. & Hu, N. F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 49, 1981–1988 (2004).

Chen, D., Zhang, H., Li, X. & Li, J. H. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal. Chem. 82, 2253–2261 (2010).

Gomes Silva, C. U., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2010).

Opperman, D. J., Piater, L. A. & van Heerden, E. A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J. Bacteriol. 190, 3076–3082 (2008).

Opperman, D. J. et al. Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem. Biophys. Res. Commun. 393, 426–431 (2010).

Choi, S. H. et al. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature. J. Mol. Catal. A: Chem. 304, 166–173 (2009).

[-]

This item appears in the following Collection(s)

Show full item record