Mostrar el registro sencillo del ítem
dc.contributor.author | Mifsud Grau, María | es_ES |
dc.contributor.author | Gargiulo, Serena | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.contributor.author | Arends, Isabel W. C. E. | es_ES |
dc.contributor.author | Hollmann, Frank | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2016-07-13T07:39:01Z | |
dc.date.available | 2016-07-13T07:39:01Z | |
dc.date.issued | 2014-01 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/10251/67516 | |
dc.description.abstract | [EN] To date, water has been poorly studied as the sacrificial electron donor for biocatalytic redox reactions using isolated enzymes. Here we demonstrate that water can also be turned into a sacrificial electron donor to promote biocatalytic redox reactions. The thermodynamic driving force required for water oxidation is obtained from UV and visible light by means of simple titanium dioxide-based photocatalysts. The electrons liberated in this process are delivered to an oxidoreductase by simple flavin redox mediators. Overall, the feasibility of photobiocatalytic, water-driven bioredox reactions is demonstrated. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Science and Innovation Ministry (Consolider Ingenio 2010-MULTICAT CSD 2009-00050, Subprograma de apoyo a Centros y Universidades de Excelencia Severo Ochoa SEV 2012 0267). M. M. acknowledges the Spanish Science and Innovation Ministry for a 'Juan de la Cierva' postdoctoral contract. S. G. acknowledges the European Union Marie Curie Programme (ITN 'Biotrains', Grant Agreement No. 238531). | |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Domain Cytochrome P450BM3 | es_ES |
dc.subject | Photsystem-II | es_ES |
dc.subject | Horseradish peroxidase | es_ES |
dc.subject | Nicotinamide coenzymes | es_ES |
dc.subject | Biocatalytic oxidation | es_ES |
dc.subject | Direct regeneration | es_ES |
dc.subject | Reduction | es_ES |
dc.subject | Epoxidation | es_ES |
dc.subject | Catalyst | es_ES |
dc.subject | Monooxygenase | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Photobiocatalytic chemistry of oxidoreductases using water as the electron donor | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/ncomms4145 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/238531/EU/A EUROPEAN BIOTECHNOLOGY TRAINING NETWORK FOR THE SUPPORT OF CHEMICAL MANUFACTURING/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Mifsud Grau, M.; Gargiulo, S.; Iborra Chornet, S.; Arends, IWCE.; Hollmann, F.; Corma Canós, A. (2014). Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications. 5:1-6. https://doi.org/10.1038/ncomms4145 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1038/ncomms4145 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.relation.senia | 269054 | es_ES |
dc.identifier.pmid | 24473192 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012). | es_ES |
dc.description.references | Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004). | es_ES |
dc.description.references | Pollard, D. J. & Woodley, J. M. Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol. 25, 66–73 (2007). | es_ES |
dc.description.references | Ran, N., Zhao, L., Chen, Z. & Tao, J. Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green. Chem. 10, 361–372 (2008). | es_ES |
dc.description.references | Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001). | es_ES |
dc.description.references | Schmid, A., Hollmann, F., Park, J. B. & Bühler, B. The use of enzymes in the chemical industry in Europe. Curr. Opin. Biotechnol. 13, 359–366 (2002). | es_ES |
dc.description.references | Schoemaker, H. E., Mink, D. & Wubbolts, M. G. Dispelling the myths-biocatalysis in industrial synthesis. Science 299, 1694–1697 (2003). | es_ES |
dc.description.references | Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013). | es_ES |
dc.description.references | Drauz K., Gröger H., May O. (eds)Enzyme Catalysis in Organic Synthesis Wiley-VCH: Weinheim, (2012). | es_ES |
dc.description.references | Weckbecker, A., Gröger, H. & Hummel, W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. inBiosystems Engineering I: Creating Superior Biocatalysts pp195–242Springer: Berlin, (2010). | es_ES |
dc.description.references | Van der Donk, W. A. & Zhao, H. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14, 421–426 (2003). | es_ES |
dc.description.references | Wu, H. et al. Methods for the regeneration of nicotinamide coenzymes. Green. Chem. 15, 1773–1789 (2013). | es_ES |
dc.description.references | Rodriguez, C., Lavandera, I. & Gotor, V. Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes. Curr. Org. Chem. 16, 2525–2541 (2012). | es_ES |
dc.description.references | Reipa, V., Mayhew, M. P. & Vilker, V. L. A direct electrode-driven P450 cycle for biocatalysis. Proc. Natl Acad. Sci. USA 94, 13554–13558 (1997). | es_ES |
dc.description.references | Bernard, J., van Heerden, E., Arends, I. W. C. E., Opperman, D. J. & Hollmann, F. Chemoenzymatic reduction of conjugated C=C double bonds. Chem. Cat. Chem. 4, 196–199 (2012). | es_ES |
dc.description.references | Hollmann, F., Arends, I. W. C. E. & Bühler, K. Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. Chem. Cat. Chem. 2, 762–782 (2010). | es_ES |
dc.description.references | Hollmann, F., Hofstetter, K., Habicher, T., Hauer, B. & Schmid, A. Direct electrochemical regeneration of monooxygenase subunits for biocatalytic asymmetric epoxidation. J. Am. Chem. Soc. 127, 6540–6541 (2005). | es_ES |
dc.description.references | Hollmann, F., Lin, P.-C., Witholt, B. & Schmid, A. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a fad-dependent monooxygenase for catalysis. J. Am. Chem. Soc. 125, 8209–8217 (2003). | es_ES |
dc.description.references | Hollmann, F. & Schmid, A. Towards [Cp*Rh(bpy)(H2O)]2+-promoted P450 catalysis: direct regeneration of CytC. J. Inorg. Biochem. 103, 313–315 (2009). | es_ES |
dc.description.references | Hollmann, F., Taglieber, A., Schulz, F. & Reetz, M. T. A light-driven stereoselective biocatalytic oxidation. Angew. Chem. Int. Ed. 46, 2903–2906 (2007). | es_ES |
dc.description.references | Mifsud Grau, M. et al. Photoenzymatic reduction of C=C double bonds. Adv. Synth. Catal. 351, 3279–3286 (2009). | es_ES |
dc.description.references | Ruinatscha, R., Dusny, C., Buehler, K. & Schmid, A. Productive asymmetric styrene epoxidation based on a next generation electroenzymatic methodology. Adv. Synth. Catal. 351, 2505–2515 (2009). | es_ES |
dc.description.references | Schwaneberg, U., Appel, D., Schmitt, J. & Schmid, R. D. P450 in biotechnology: zinc driven ω-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. J. Biotechnol. 84, 249–257 (2000). | es_ES |
dc.description.references | Taglieber, A., Schulz, F., Hollmann, F., Rusek, M. & Reetz, M. T. Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. Chem. Bio. Chem. 9, 565–572 (2008). | es_ES |
dc.description.references | Udit, A. K., Arnold, F. H. & Gray, H. B. Cobaltocene-mediated catalytic monooxygenation using holo and heme domain cytochrome P450 BM3. J. Inorg. Biochem. 98, 1547–1550 (2004). | es_ES |
dc.description.references | Udit, A. K., Hill, M. G., Bittner, V. G., Arnold, F. H. & Gray, H. B. Reduction of dioxygen catalyzed by pyrene-wired heme domain cytochrome p450 bm3 electrodes. J. Am. Chem. Soc. 126, 10218–10219 (2004). | es_ES |
dc.description.references | Unversucht, S., Hollmann, F., Schmid, A. & van Pée, K.-H. FADH2-Dependence of Tryptophan 7-Halogenase. Adv. Synth. Catal. 347, 1163–1167 (2005). | es_ES |
dc.description.references | Zilly, F. E., Taglieber, A., Schulz, F., Hollmann, F. & Reetz, M. T. Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem. Commun. 7152–7154 (2009). | es_ES |
dc.description.references | Yehezkeli, O. et al. Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3, 742 (2012). | es_ES |
dc.description.references | Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012). | es_ES |
dc.description.references | Dau, H., Zaharieva, I. & Haumann, M. Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol. 16, 3–10 (2012). | es_ES |
dc.description.references | Qu, Y. & Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013). | es_ES |
dc.description.references | Takanabe, K. & Domen, K. Preparation of inorganic photocatalytic materials for overall water splitting. Chem. Cat. Chem. 4, 1485–1497 (2012). | es_ES |
dc.description.references | Wee, T.-L. et al. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 133, 16742–16745 (2011). | es_ES |
dc.description.references | Cargnello, M. & Fornasiero, P. Photocatalysis by nanostructured TiO2 based semiconductors. inHandbook of Green Chemistry, Green Nanoscience (eds Selva M., Perosa A. Wiley-VCH: Weinheim, (2010). | es_ES |
dc.description.references | Liu, S. Q. & Chen, A. C. Coadsorption of horseradish peroxidase with thionine on TiO2: Nanotubes for biosensing. Langmuir 21, 8409–8413 (2005). | es_ES |
dc.description.references | Zhang, Y., He, P. L. & Hu, N. F. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 49, 1981–1988 (2004). | es_ES |
dc.description.references | Chen, D., Zhang, H., Li, X. & Li, J. H. Biofunctional titania nanotubes for visible-light-activated photoelectrochemical biosensing. Anal. Chem. 82, 2253–2261 (2010). | es_ES |
dc.description.references | Gomes Silva, C. U., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2010). | es_ES |
dc.description.references | Opperman, D. J., Piater, L. A. & van Heerden, E. A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme. J. Bacteriol. 190, 3076–3082 (2008). | es_ES |
dc.description.references | Opperman, D. J. et al. Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01. Biochem. Biophys. Res. Commun. 393, 426–431 (2010). | es_ES |
dc.description.references | Choi, S. H. et al. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature. J. Mol. Catal. A: Chem. 304, 166–173 (2009). | es_ES |