- -

Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Orquín Serrano, Ismael es_ES
dc.contributor.author Vijande, J. es_ES
dc.contributor.author Villatoro Machuca, Francisco Román es_ES
dc.contributor.author Ferrando, Albert es_ES
dc.contributor.author Fernández de Córdoba Castellá, Pedro José es_ES
dc.contributor.author Michinel Alvarez, Humberto es_ES
dc.date.accessioned 2016-07-13T08:33:01Z
dc.date.available 2016-07-13T08:33:01Z
dc.date.issued 2015
dc.identifier.issn 1742-6588
dc.identifier.uri http://hdl.handle.net/10251/67528
dc.description.abstract In the present work a novel application of Transparent Boundary Conditions (TBC) to nematic liquid crystal cells (NLCC) with planar alignment and a patterned electrode is studied. This device is attracting great interest since it allows soliton steering by optically and externally induced waveguides. We employ the continuum Oseen-Frank theory to find the tilt and twist angle distributions in the cell under the one-constant approximation. The electric field distribution takes into account the whole 2D permittivity tensor for the transverse coordinates. Standard finite difference time domain methods together with an iterative method is applied to find an approximate solution to our coupled problem. A novel class of TBC is used to correctly define the boundary for both the distortion angle problem and the electric field distribution when using patterned electrodes. Thus, we achieve an important decrease of computational needs when solving this kind of problems and we are also capable of exploring weak anchoring conditions for NLCC. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Physics: Conference Series es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject NEMATIC LIQUID-CRYSTALS es_ES
dc.subject SCHRODINGER-EQUATION es_ES
dc.subject SPATIAL SOLITONS es_ES
dc.subject SIMULATION es_ES
dc.subject CONSTANTS es_ES
dc.subject DIRECTOR es_ES
dc.subject WAVES es_ES
dc.subject LIGHT es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1742-6596/605/1/012028
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Orquín Serrano, I.; Vijande, J.; Villatoro Machuca, FR.; Ferrando, A.; Fernández De Córdoba Castellá, PJ.; Michinel Alvarez, H. (2015). Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes. Journal of Physics: Conference Series. 605:0120281-01202811. doi:10.1088/1742-6596/605/1/012028 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1742-6596/605/1/012028 es_ES
dc.description.upvformatpinicio 0120281 es_ES
dc.description.upvformatpfin 01202811 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 605 es_ES
dc.relation.senia 297725 es_ES
dc.description.references Peccianti, M., De Rossi, A., Assanto, G., De Luca, A., Umeton, C., & Khoo, I. C. (2000). Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells. Applied Physics Letters, 77(1), 7-9. doi:10.1063/1.126859 es_ES
dc.description.references Peccianti, M., & Assanto, G. (2001). Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals. Optics Letters, 26(21), 1690. doi:10.1364/ol.26.001690 es_ES
dc.description.references Peccianti, M., Conti, C., Assanto, G., De Luca, A., & Umeton, C. (2002). All-optical switching and logic gating with spatial solitons in liquid crystals. Applied Physics Letters, 81(18), 3335-3337. doi:10.1063/1.1519101 es_ES
dc.description.references Fratalocchi, A., Assanto, G., Brzdąkiewicz, K. A., & Karpierz, M. A. (2005). All-optical switching and beam steering in tunable waveguide arrays. Applied Physics Letters, 86(5), 051112. doi:10.1063/1.1857071 es_ES
dc.description.references Fratalocchi, A., Assanto, G., Brzdąkiewicz, K. A., & Karpierz, M. A. (2005). Optical multiband vector breathers in tunable waveguide arrays. Optics Letters, 30(2), 174. doi:10.1364/ol.30.000174 es_ES
dc.description.references Beeckman, J., Neyts, K., & Haelterman, M. (2006). Patterned electrode steering of nematicons. Journal of Optics A: Pure and Applied Optics, 8(2), 214-220. doi:10.1088/1464-4258/8/2/018 es_ES
dc.description.references Peccianti, M., Dyadyusha, A., Kaczmarek, M., & Assanto, G. (2008). Escaping Solitons from a Trapping Potential. Physical Review Letters, 101(15). doi:10.1103/physrevlett.101.153902 es_ES
dc.description.references Kivshar, Y. (2006). Bending light at will. Nature Physics, 2(11), 729-730. doi:10.1038/nphys452 es_ES
dc.description.references Alexe-Ionescu, A. L., Barberi, R., Barbero, G., & Giocondo, M. (1994). Anchoring energy for nematic liquid crystals: Contribution from the spatial variation of the elastic constants. Physical Review E, 49(6), 5378-5388. doi:10.1103/physreve.49.5378 es_ES
dc.description.references Allen, M. P., & Frenkel, D. (1988). Calculation of liquid-crystal Frank constants by computer simulation. Physical Review A, 37(5), 1813-1816. doi:10.1103/physreva.37.1813 es_ES
dc.description.references He, S. (2001). Iterative finite-difference method for calculating the distribution of a liquid-crystal director. Optical Engineering, 40(11), 2552. doi:10.1117/1.1411974 es_ES
dc.description.references Engquist, B., & Majda, A. (1977). Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation, 31(139), 629-629. doi:10.1090/s0025-5718-1977-0436612-4 es_ES
dc.description.references Grote, M. J., & Keller, J. B. (1995). Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation. SIAM Journal on Applied Mathematics, 55(2), 280-297. doi:10.1137/s0036139993269266 es_ES
dc.description.references Hagstrom, T., Warburton, T., & Givoli, D. (2010). Radiation boundary conditions for time-dependent waves based on complete plane wave expansions. Journal of Computational and Applied Mathematics, 234(6), 1988-1995. doi:10.1016/j.cam.2009.08.050 es_ES
dc.description.references Baskakov, V. A., & Popov, A. V. (1991). Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion, 14(2), 123-128. doi:10.1016/0165-2125(91)90053-q es_ES
dc.description.references Lubich, C., & Schädle, A. (2002). Fast Convolution for Nonreflecting Boundary Conditions. SIAM Journal on Scientific Computing, 24(1), 161-182. doi:10.1137/s1064827501388741 es_ES
dc.description.references Kuska, J.-P. (1992). Absorbing boundary conditions for the Schrödinger equation on finite intervals. Physical Review B, 46(8), 5000-5003. doi:10.1103/physrevb.46.5000 es_ES
dc.description.references Di Menza, L. (1996). Absorbing boundary conditions on a hypersurface for the Schrödinger equation in a half-space. Applied Mathematics Letters, 9(4), 55-59. doi:10.1016/0893-9659(96)00051-1 es_ES
dc.description.references Schädle, A. (2002). Non-reflecting boundary conditions for the two-dimensional Schrödinger equation. Wave Motion, 35(2), 181-188. doi:10.1016/s0165-2125(01)00098-1 es_ES
dc.description.references Arnold, A., Ehrhardt, M., & Sofronov, I. (2003). Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Communications in Mathematical Sciences, 1(3), 501-556. doi:10.4310/cms.2003.v1.n3.a7 es_ES
dc.description.references Lindquist, J. M., Neta, B., & Giraldo, F. X. (2012). High-order non-reflecting boundary conditions for dispersive waves in polar coordinates using spectral elements. Applied Mathematics and Computation, 218(12), 6666-6676. doi:10.1016/j.amc.2011.12.023 es_ES
dc.description.references Sun, Z., Wu, X., Zhang, J., & Wang, D. (2012). A linearized difference scheme for semilinear parabolic equations with nonlinear absorbing boundary conditions. Applied Mathematics and Computation, 218(9), 5187-5201. doi:10.1016/j.amc.2011.10.083 es_ES
dc.description.references Hadley, G. R. (1991). Transparent boundary condition for beam propagation. Optics Letters, 16(9), 624. doi:10.1364/ol.16.000624 es_ES
dc.description.references Hadley, G. R. (1992). Transparent boundary condition for the beam propagation method. IEEE Journal of Quantum Electronics, 28(1), 363-370. doi:10.1109/3.119536 es_ES
dc.description.references Beeckman, J., Chałubinska, K., & Neyts, K. (2006). Lateral Light Propagation in SSFLC Devices and Thermal Optical Nonlinearities. Ferroelectrics, 344(1), 225-231. doi:10.1080/00150190600968348 es_ES
dc.description.references Peccianti, M., Dyadyusha, A., Kaczmarek, M., & Assanto, G. (2006). Tunable refraction and reflection of self-confined light beams. Nature Physics, 2(11), 737-742. doi:10.1038/nphys427 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem