Mostrar el registro sencillo del ítem
dc.contributor.author | Orquín Serrano, Ismael | es_ES |
dc.contributor.author | Vijande, J. | es_ES |
dc.contributor.author | Villatoro Machuca, Francisco Román | es_ES |
dc.contributor.author | Ferrando, Albert | es_ES |
dc.contributor.author | Fernández de Córdoba Castellá, Pedro José | es_ES |
dc.contributor.author | Michinel Alvarez, Humberto | es_ES |
dc.date.accessioned | 2016-07-13T08:33:01Z | |
dc.date.available | 2016-07-13T08:33:01Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1742-6588 | |
dc.identifier.uri | http://hdl.handle.net/10251/67528 | |
dc.description.abstract | In the present work a novel application of Transparent Boundary Conditions (TBC) to nematic liquid crystal cells (NLCC) with planar alignment and a patterned electrode is studied. This device is attracting great interest since it allows soliton steering by optically and externally induced waveguides. We employ the continuum Oseen-Frank theory to find the tilt and twist angle distributions in the cell under the one-constant approximation. The electric field distribution takes into account the whole 2D permittivity tensor for the transverse coordinates. Standard finite difference time domain methods together with an iterative method is applied to find an approximate solution to our coupled problem. A novel class of TBC is used to correctly define the boundary for both the distortion angle problem and the electric field distribution when using patterned electrodes. Thus, we achieve an important decrease of computational needs when solving this kind of problems and we are also capable of exploring weak anchoring conditions for NLCC. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Physics: Conference Series | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | NEMATIC LIQUID-CRYSTALS | es_ES |
dc.subject | SCHRODINGER-EQUATION | es_ES |
dc.subject | SPATIAL SOLITONS | es_ES |
dc.subject | SIMULATION | es_ES |
dc.subject | CONSTANTS | es_ES |
dc.subject | DIRECTOR | es_ES |
dc.subject | WAVES | es_ES |
dc.subject | LIGHT | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1742-6596/605/1/012028 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Orquín Serrano, I.; Vijande, J.; Villatoro Machuca, FR.; Ferrando, A.; Fernández De Córdoba Castellá, PJ.; Michinel Alvarez, H. (2015). Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes. Journal of Physics: Conference Series. 605:0120281-01202811. doi:10.1088/1742-6596/605/1/012028 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1742-6596/605/1/012028 | es_ES |
dc.description.upvformatpinicio | 0120281 | es_ES |
dc.description.upvformatpfin | 01202811 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 605 | es_ES |
dc.relation.senia | 297725 | es_ES |
dc.description.references | Peccianti, M., De Rossi, A., Assanto, G., De Luca, A., Umeton, C., & Khoo, I. C. (2000). Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells. Applied Physics Letters, 77(1), 7-9. doi:10.1063/1.126859 | es_ES |
dc.description.references | Peccianti, M., & Assanto, G. (2001). Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals. Optics Letters, 26(21), 1690. doi:10.1364/ol.26.001690 | es_ES |
dc.description.references | Peccianti, M., Conti, C., Assanto, G., De Luca, A., & Umeton, C. (2002). All-optical switching and logic gating with spatial solitons in liquid crystals. Applied Physics Letters, 81(18), 3335-3337. doi:10.1063/1.1519101 | es_ES |
dc.description.references | Fratalocchi, A., Assanto, G., Brzdąkiewicz, K. A., & Karpierz, M. A. (2005). All-optical switching and beam steering in tunable waveguide arrays. Applied Physics Letters, 86(5), 051112. doi:10.1063/1.1857071 | es_ES |
dc.description.references | Fratalocchi, A., Assanto, G., Brzdąkiewicz, K. A., & Karpierz, M. A. (2005). Optical multiband vector breathers in tunable waveguide arrays. Optics Letters, 30(2), 174. doi:10.1364/ol.30.000174 | es_ES |
dc.description.references | Beeckman, J., Neyts, K., & Haelterman, M. (2006). Patterned electrode steering of nematicons. Journal of Optics A: Pure and Applied Optics, 8(2), 214-220. doi:10.1088/1464-4258/8/2/018 | es_ES |
dc.description.references | Peccianti, M., Dyadyusha, A., Kaczmarek, M., & Assanto, G. (2008). Escaping Solitons from a Trapping Potential. Physical Review Letters, 101(15). doi:10.1103/physrevlett.101.153902 | es_ES |
dc.description.references | Kivshar, Y. (2006). Bending light at will. Nature Physics, 2(11), 729-730. doi:10.1038/nphys452 | es_ES |
dc.description.references | Alexe-Ionescu, A. L., Barberi, R., Barbero, G., & Giocondo, M. (1994). Anchoring energy for nematic liquid crystals: Contribution from the spatial variation of the elastic constants. Physical Review E, 49(6), 5378-5388. doi:10.1103/physreve.49.5378 | es_ES |
dc.description.references | Allen, M. P., & Frenkel, D. (1988). Calculation of liquid-crystal Frank constants by computer simulation. Physical Review A, 37(5), 1813-1816. doi:10.1103/physreva.37.1813 | es_ES |
dc.description.references | He, S. (2001). Iterative finite-difference method for calculating the distribution of a liquid-crystal director. Optical Engineering, 40(11), 2552. doi:10.1117/1.1411974 | es_ES |
dc.description.references | Engquist, B., & Majda, A. (1977). Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation, 31(139), 629-629. doi:10.1090/s0025-5718-1977-0436612-4 | es_ES |
dc.description.references | Grote, M. J., & Keller, J. B. (1995). Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation. SIAM Journal on Applied Mathematics, 55(2), 280-297. doi:10.1137/s0036139993269266 | es_ES |
dc.description.references | Hagstrom, T., Warburton, T., & Givoli, D. (2010). Radiation boundary conditions for time-dependent waves based on complete plane wave expansions. Journal of Computational and Applied Mathematics, 234(6), 1988-1995. doi:10.1016/j.cam.2009.08.050 | es_ES |
dc.description.references | Baskakov, V. A., & Popov, A. V. (1991). Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion, 14(2), 123-128. doi:10.1016/0165-2125(91)90053-q | es_ES |
dc.description.references | Lubich, C., & Schädle, A. (2002). Fast Convolution for Nonreflecting Boundary Conditions. SIAM Journal on Scientific Computing, 24(1), 161-182. doi:10.1137/s1064827501388741 | es_ES |
dc.description.references | Kuska, J.-P. (1992). Absorbing boundary conditions for the Schrödinger equation on finite intervals. Physical Review B, 46(8), 5000-5003. doi:10.1103/physrevb.46.5000 | es_ES |
dc.description.references | Di Menza, L. (1996). Absorbing boundary conditions on a hypersurface for the Schrödinger equation in a half-space. Applied Mathematics Letters, 9(4), 55-59. doi:10.1016/0893-9659(96)00051-1 | es_ES |
dc.description.references | Schädle, A. (2002). Non-reflecting boundary conditions for the two-dimensional Schrödinger equation. Wave Motion, 35(2), 181-188. doi:10.1016/s0165-2125(01)00098-1 | es_ES |
dc.description.references | Arnold, A., Ehrhardt, M., & Sofronov, I. (2003). Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Communications in Mathematical Sciences, 1(3), 501-556. doi:10.4310/cms.2003.v1.n3.a7 | es_ES |
dc.description.references | Lindquist, J. M., Neta, B., & Giraldo, F. X. (2012). High-order non-reflecting boundary conditions for dispersive waves in polar coordinates using spectral elements. Applied Mathematics and Computation, 218(12), 6666-6676. doi:10.1016/j.amc.2011.12.023 | es_ES |
dc.description.references | Sun, Z., Wu, X., Zhang, J., & Wang, D. (2012). A linearized difference scheme for semilinear parabolic equations with nonlinear absorbing boundary conditions. Applied Mathematics and Computation, 218(9), 5187-5201. doi:10.1016/j.amc.2011.10.083 | es_ES |
dc.description.references | Hadley, G. R. (1991). Transparent boundary condition for beam propagation. Optics Letters, 16(9), 624. doi:10.1364/ol.16.000624 | es_ES |
dc.description.references | Hadley, G. R. (1992). Transparent boundary condition for the beam propagation method. IEEE Journal of Quantum Electronics, 28(1), 363-370. doi:10.1109/3.119536 | es_ES |
dc.description.references | Beeckman, J., Chałubinska, K., & Neyts, K. (2006). Lateral Light Propagation in SSFLC Devices and Thermal Optical Nonlinearities. Ferroelectrics, 344(1), 225-231. doi:10.1080/00150190600968348 | es_ES |
dc.description.references | Peccianti, M., Dyadyusha, A., Kaczmarek, M., & Assanto, G. (2006). Tunable refraction and reflection of self-confined light beams. Nature Physics, 2(11), 737-742. doi:10.1038/nphys427 | es_ES |