- -

Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes

Mostrar el registro completo del ítem

Orquín Serrano, I.; Vijande, J.; Villatoro Machuca, FR.; Ferrando, A.; Fernández De Córdoba Castellá, PJ.; Michinel Alvarez, H. (2015). Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes. Journal of Physics: Conference Series. 605:0120281-01202811. doi:10.1088/1742-6596/605/1/012028

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67528

Ficheros en el ítem

Metadatos del ítem

Título: Transparent Boundary Condition for Oseen-Frank Model. Application for NLC Cells With Patterned Electrodes
Autor: Orquín Serrano, Ismael Vijande, J. Villatoro Machuca, Francisco Román Ferrando, Albert Fernández de Córdoba Castellá, Pedro José Michinel Alvarez, Humberto
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In the present work a novel application of Transparent Boundary Conditions (TBC) to nematic liquid crystal cells (NLCC) with planar alignment and a patterned electrode is studied. This device is attracting great interest ...[+]
Palabras clave: NEMATIC LIQUID-CRYSTALS , SCHRODINGER-EQUATION , SPATIAL SOLITONS , SIMULATION , CONSTANTS , DIRECTOR , WAVES , LIGHT
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Physics: Conference Series. (issn: 1742-6588 )
DOI: 10.1088/1742-6596/605/1/012028
Editorial:
IOP Publishing
Versión del editor: http://dx.doi.org/10.1088/1742-6596/605/1/012028
Tipo: Artículo

References

Peccianti, M., De Rossi, A., Assanto, G., De Luca, A., Umeton, C., & Khoo, I. C. (2000). Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells. Applied Physics Letters, 77(1), 7-9. doi:10.1063/1.126859

Peccianti, M., & Assanto, G. (2001). Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals. Optics Letters, 26(21), 1690. doi:10.1364/ol.26.001690

Peccianti, M., Conti, C., Assanto, G., De Luca, A., & Umeton, C. (2002). All-optical switching and logic gating with spatial solitons in liquid crystals. Applied Physics Letters, 81(18), 3335-3337. doi:10.1063/1.1519101 [+]
Peccianti, M., De Rossi, A., Assanto, G., De Luca, A., Umeton, C., & Khoo, I. C. (2000). Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells. Applied Physics Letters, 77(1), 7-9. doi:10.1063/1.126859

Peccianti, M., & Assanto, G. (2001). Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals. Optics Letters, 26(21), 1690. doi:10.1364/ol.26.001690

Peccianti, M., Conti, C., Assanto, G., De Luca, A., & Umeton, C. (2002). All-optical switching and logic gating with spatial solitons in liquid crystals. Applied Physics Letters, 81(18), 3335-3337. doi:10.1063/1.1519101

Fratalocchi, A., Assanto, G., Brzdąkiewicz, K. A., & Karpierz, M. A. (2005). All-optical switching and beam steering in tunable waveguide arrays. Applied Physics Letters, 86(5), 051112. doi:10.1063/1.1857071

Fratalocchi, A., Assanto, G., Brzdąkiewicz, K. A., & Karpierz, M. A. (2005). Optical multiband vector breathers in tunable waveguide arrays. Optics Letters, 30(2), 174. doi:10.1364/ol.30.000174

Beeckman, J., Neyts, K., & Haelterman, M. (2006). Patterned electrode steering of nematicons. Journal of Optics A: Pure and Applied Optics, 8(2), 214-220. doi:10.1088/1464-4258/8/2/018

Peccianti, M., Dyadyusha, A., Kaczmarek, M., & Assanto, G. (2008). Escaping Solitons from a Trapping Potential. Physical Review Letters, 101(15). doi:10.1103/physrevlett.101.153902

Kivshar, Y. (2006). Bending light at will. Nature Physics, 2(11), 729-730. doi:10.1038/nphys452

Alexe-Ionescu, A. L., Barberi, R., Barbero, G., & Giocondo, M. (1994). Anchoring energy for nematic liquid crystals: Contribution from the spatial variation of the elastic constants. Physical Review E, 49(6), 5378-5388. doi:10.1103/physreve.49.5378

Allen, M. P., & Frenkel, D. (1988). Calculation of liquid-crystal Frank constants by computer simulation. Physical Review A, 37(5), 1813-1816. doi:10.1103/physreva.37.1813

He, S. (2001). Iterative finite-difference method for calculating the distribution of a liquid-crystal director. Optical Engineering, 40(11), 2552. doi:10.1117/1.1411974

Engquist, B., & Majda, A. (1977). Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation, 31(139), 629-629. doi:10.1090/s0025-5718-1977-0436612-4

Grote, M. J., & Keller, J. B. (1995). Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation. SIAM Journal on Applied Mathematics, 55(2), 280-297. doi:10.1137/s0036139993269266

Hagstrom, T., Warburton, T., & Givoli, D. (2010). Radiation boundary conditions for time-dependent waves based on complete plane wave expansions. Journal of Computational and Applied Mathematics, 234(6), 1988-1995. doi:10.1016/j.cam.2009.08.050

Baskakov, V. A., & Popov, A. V. (1991). Implementation of transparent boundaries for numerical solution of the Schrödinger equation. Wave Motion, 14(2), 123-128. doi:10.1016/0165-2125(91)90053-q

Lubich, C., & Schädle, A. (2002). Fast Convolution for Nonreflecting Boundary Conditions. SIAM Journal on Scientific Computing, 24(1), 161-182. doi:10.1137/s1064827501388741

Kuska, J.-P. (1992). Absorbing boundary conditions for the Schrödinger equation on finite intervals. Physical Review B, 46(8), 5000-5003. doi:10.1103/physrevb.46.5000

Di Menza, L. (1996). Absorbing boundary conditions on a hypersurface for the Schrödinger equation in a half-space. Applied Mathematics Letters, 9(4), 55-59. doi:10.1016/0893-9659(96)00051-1

Schädle, A. (2002). Non-reflecting boundary conditions for the two-dimensional Schrödinger equation. Wave Motion, 35(2), 181-188. doi:10.1016/s0165-2125(01)00098-1

Arnold, A., Ehrhardt, M., & Sofronov, I. (2003). Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Communications in Mathematical Sciences, 1(3), 501-556. doi:10.4310/cms.2003.v1.n3.a7

Lindquist, J. M., Neta, B., & Giraldo, F. X. (2012). High-order non-reflecting boundary conditions for dispersive waves in polar coordinates using spectral elements. Applied Mathematics and Computation, 218(12), 6666-6676. doi:10.1016/j.amc.2011.12.023

Sun, Z., Wu, X., Zhang, J., & Wang, D. (2012). A linearized difference scheme for semilinear parabolic equations with nonlinear absorbing boundary conditions. Applied Mathematics and Computation, 218(9), 5187-5201. doi:10.1016/j.amc.2011.10.083

Hadley, G. R. (1991). Transparent boundary condition for beam propagation. Optics Letters, 16(9), 624. doi:10.1364/ol.16.000624

Hadley, G. R. (1992). Transparent boundary condition for the beam propagation method. IEEE Journal of Quantum Electronics, 28(1), 363-370. doi:10.1109/3.119536

Beeckman, J., Chałubinska, K., & Neyts, K. (2006). Lateral Light Propagation in SSFLC Devices and Thermal Optical Nonlinearities. Ferroelectrics, 344(1), 225-231. doi:10.1080/00150190600968348

Peccianti, M., Dyadyusha, A., Kaczmarek, M., & Assanto, G. (2006). Tunable refraction and reflection of self-confined light beams. Nature Physics, 2(11), 737-742. doi:10.1038/nphys427

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem