Krämer, R. (1998). Fluorescent Chemosensors for Cu2+ Ions: Fast, Selective, and Highly Sensitive. Angewandte Chemie International Edition, 37(6), 772-773. doi:10.1002/(sici)1521-3773(19980403)37:6<772::aid-anie772>3.0.co;2-z
Fabbrizzi, L., & Poggi, A. (1995). Sensors and switches from supramolecular chemistry. Chemical Society Reviews, 24(3), 197. doi:10.1039/cs9952400197
Wu, Y., Peng, X., Guo, B., Fan, J., Zhang, Z., Wang, J., … Gao, Y. (2005). Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(ii) in living cells. Organic & Biomolecular Chemistry, 3(8), 1387. doi:10.1039/b501795e
[+]
Krämer, R. (1998). Fluorescent Chemosensors for Cu2+ Ions: Fast, Selective, and Highly Sensitive. Angewandte Chemie International Edition, 37(6), 772-773. doi:10.1002/(sici)1521-3773(19980403)37:6<772::aid-anie772>3.0.co;2-z
Fabbrizzi, L., & Poggi, A. (1995). Sensors and switches from supramolecular chemistry. Chemical Society Reviews, 24(3), 197. doi:10.1039/cs9952400197
Wu, Y., Peng, X., Guo, B., Fan, J., Zhang, Z., Wang, J., … Gao, Y. (2005). Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(ii) in living cells. Organic & Biomolecular Chemistry, 3(8), 1387. doi:10.1039/b501795e
Peng, X., Du, J., Fan, J., Wang, J., Wu, Y., Zhao, J., … Xu, T. (2007). A Selective Fluorescent Sensor for Imaging Cd2+in Living Cells. Journal of the American Chemical Society, 129(6), 1500-1501. doi:10.1021/ja0643319
Chen, X., Zhou, Y., Peng, X., & Yoon, J. (2010). Fluorescent and colorimetric probes for detection of thiols. Chemical Society Reviews, 39(6), 2120. doi:10.1039/b925092a
Barba-Bon, A., Costero, A. M., Gil, S., Parra, M., Soto, J., Martínez-Máñez, R., & Sancenón, F. (2012). A new selective fluorogenic probe for trivalent cations. Chemical Communications, 48(24), 3000. doi:10.1039/c2cc17184h
Chen, C.-H., Liao, D.-J., Wan, C.-F., & Wu, A.-T. (2013). A turn-on and reversible Schiff base fluorescence sensor for Al3+ ion. The Analyst, 138(9), 2527. doi:10.1039/c3an00004d
Liu, S., Zhang, L., & Liu, X. (2013). A highly sensitive and selective fluorescent probe for Fe3+ based on 2-(2-hydroxyphenyl)benzothiazole. New Journal of Chemistry, 37(3), 821. doi:10.1039/c2nj40978j
Liu, S.-R., & Wu, S.-P. (2012). New water-soluble highly selective fluorescent chemosensor for Fe (III) ions and its application to living cell imaging. Sensors and Actuators B: Chemical, 171-172, 1110-1116. doi:10.1016/j.snb.2012.06.041
Arakawa, H., Ahmad, R., Naoui, M., & Tajmir-Riahi, H.-A. (2000). A Comparative Study of Calf Thymus DNA Binding to Cr(III) and Cr(VI) Ions. Journal of Biological Chemistry, 275(14), 10150-10153. doi:10.1074/jbc.275.14.10150
Wu, H., Zhou, P., Wang, J., Zhao, L., & Duan, C. (2009). Dansyl-based fluorescent chemosensors for selective responses of Cr(iii). New J. Chem., 33(3), 653-658. doi:10.1039/b815207a
Aisen, P., Wessling-Resnick, M., & Leibold, E. A. (1999). Iron metabolism. Current Opinion in Chemical Biology, 3(2), 200-206. doi:10.1016/s1367-5931(99)80033-7
Eisenstein, R. S. (2000). IRONREGULATORYPROTEINS AND THEMOLECULARCONTROL OFMAMMALIANIRONMETABOLISM. Annual Review of Nutrition, 20(1), 627-662. doi:10.1146/annurev.nutr.20.1.627
Andrews, N. C. (1999). Disorders of Iron Metabolism. New England Journal of Medicine, 341(26), 1986-1995. doi:10.1056/nejm199912233412607
Touati, D. (2000). Iron and Oxidative Stress in Bacteria. Archives of Biochemistry and Biophysics, 373(1), 1-6. doi:10.1006/abbi.1999.1518
García-Medina, S., Razo-Estrada, A. C., Gómez-Oliván, L. M., Amaya-Chávez, A., Madrigal-Bujaidar, E., & Galar-Martínez, M. (2009). Aluminum-induced oxidative stress in lymphocytes of common carp (Cyprinus carpio). Fish Physiology and Biochemistry, 36(4), 875-882. doi:10.1007/s10695-009-9363-1
Loudet, A., & Burgess, K. (2007). BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chemical Reviews, 107(11), 4891-4932. doi:10.1021/cr078381n
Ulrich, G., Ziessel, R., & Harriman, A. (2008). The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angewandte Chemie International Edition, 47(7), 1184-1201. doi:10.1002/anie.200702070
Wang, D., Shiraishi, Y., & Hirai, T. (2010). A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Letters, 51(18), 2545-2549. doi:10.1016/j.tetlet.2010.03.013
Xie, X., & Qin, Y. (2011). A dual functional near infrared fluorescent probe based on the bodipy fluorophores for selective detection of copper and aluminum ions. Sensors and Actuators B: Chemical, 156(1), 213-217. doi:10.1016/j.snb.2011.04.020
Wang, D., Shiraishi, Y., & Hirai, T. (2011). A BODIPY-based fluorescent chemodosimeter for Cu(ii) driven by an oxidative dehydrogenation mechanism. Chemical Communications, 47(9), 2673. doi:10.1039/c0cc04069j
Sun, H.-B., Liu, S.-J., Ma, T.-C., Song, N.-N., Zhao, Q., & Huang, W. (2011). An excellent BODIPY dye containing a benzo[2,1,3]thiadiazole bridge as a highly selective colorimetric and fluorescent probe for Hg2+ with naked-eye detection. New Journal of Chemistry, 35(6), 1194. doi:10.1039/c0nj00850h
Son, H., Lee, J. H., Kim, Y.-R., Lee, I. S., Han, S., Liu, X., … Jung, J. H. (2012). A BODIPY-functionalized bimetallic probe for sensitive and selective color-fluorometric chemosensing of Hg2+. The Analyst, 137(17), 3914. doi:10.1039/c2an35704f
Wang, M., Wang, J., Xue, W., & Wu, A. (2013). A benzimidazole-based ratiometric fluorescent sensor for Cr3+ and Fe3+ in aqueous solution. Dyes and Pigments, 97(3), 475-480. doi:10.1016/j.dyepig.2013.02.005
Hirata, T., Terai, T., Komatsu, T., Hanaoka, K., & Nagano, T. (2011). Development of a potassium ion-selective fluorescent sensor based on 3-styrylated BODIPY. Bioorganic & Medicinal Chemistry Letters, 21(20), 6090-6093. doi:10.1016/j.bmcl.2011.08.056
Zhu, S., Zhang, J., Janjanam, J., Vegesna, G., Luo, F.-T., Tiwari, A., & Liu, H. (2013). Highly water-soluble BODIPY-based fluorescent probes for sensitive fluorescent sensing of zinc(ii). Journal of Materials Chemistry B, 1(12), 1722. doi:10.1039/c3tb00249g
Baruah, M., Qin, W., Basarić, N., De Borggraeve, W. M., & Boens, N. (2005). BODIPY-Based Hydroxyaryl Derivatives as Fluorescent pH Probes. The Journal of Organic Chemistry, 70(10), 4152-4157. doi:10.1021/jo0503714
Ikawa, Y., Moriyama, S., & Furuta, H. (2008). Facile syntheses of BODIPY derivatives for fluorescent labeling of the 3′ and 5′ ends of RNAs. Analytical Biochemistry, 378(2), 166-170. doi:10.1016/j.ab.2008.03.054
Saki, N., Dinc, T., & Akkaya, E. U. (2006). Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold. Tetrahedron, 62(11), 2721-2725. doi:10.1016/j.tet.2005.12.021
Umberger, J. Q., & LaMer, V. K. (1945). The Kinetics of Diffusion Controlled Molecular and Ionic Reactions in Solution as Determined by Measurements of the Quenching of Fluorescence1,2. Journal of the American Chemical Society, 67(7), 1099-1109. doi:10.1021/ja01223a023
De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386p
Kollmannsberger, M., Gareis, T., Heinl, S., Daub, J., & Breu, J. (1997). Electrogenerated Chemiluminescence and Proton-Dependent Switching of Fluorescence: Functionalized Difluoroboradiaza-s-indacenes. Angewandte Chemie International Edition in English, 36(12), 1333-1335. doi:10.1002/anie.199713331
Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197t
[-]