- -

Environmentally sustainable biogas? the key role of manure co-digestion with energy crops

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Environmentally sustainable biogas? the key role of manure co-digestion with energy crops

Show full item record

Agostini, A.; Battini, F.; Giuntoli, J.; Tabaglio, V.; Padella, M.; Baxter, D.; Marelli, L.... (2015). Environmentally sustainable biogas? the key role of manure co-digestion with energy crops. Energies. 8(6):5234-5265. https://doi.org/10.3390/en8065234

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67546

Files in this item

Item Metadata

Title: Environmentally sustainable biogas? the key role of manure co-digestion with energy crops
Author: Agostini, Alessandro Battini, Ferdinando Giuntoli, Jacopo Tabaglio, Vincenzo Padella, Monica Baxter, David Marelli, Luisa Amaducci, Stefano
UPV Unit: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
We analyzed the environmental impacts of three biogas systems based on dairy manure, sorghum and maize. The geog. scope of the anal. is the Po valley, in Italy. The anaerobic digestion of manure guarantees high GHG (Green ...[+]
Subjects: Maize , Manure , Sorghum , Biogas , GHG emissions , Environmental impacts
Copyrigths: Reserva de todos los derechos
Source:
Energies. (issn: 1996-1073 )
DOI: 10.3390/en8065234
Publisher:
MDPI
Publisher version: http://dx.doi.org/10.3390/en8065234
Type: Artículo

References

Bacenetti, J., Fusi, A., Negri, M., Guidetti, R., & Fiala, M. (2014). Environmental assessment of two different crop systems in terms of biomethane potential production. Science of The Total Environment, 466-467, 1066-1077. doi:10.1016/j.scitotenv.2013.07.109

Capponi, S., Fazio, S., & Barbanti, L. (2012). CO2 savings affect the break-even distance of feedstock supply and digestate placement in biogas production. Renewable Energy, 37(1), 45-52. doi:10.1016/j.renene.2011.05.005

Gerin, P. A., Vliegen, F., & Jossart, J.-M. (2008). Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology, 99(7), 2620-2627. doi:10.1016/j.biortech.2007.04.049 [+]
Bacenetti, J., Fusi, A., Negri, M., Guidetti, R., & Fiala, M. (2014). Environmental assessment of two different crop systems in terms of biomethane potential production. Science of The Total Environment, 466-467, 1066-1077. doi:10.1016/j.scitotenv.2013.07.109

Capponi, S., Fazio, S., & Barbanti, L. (2012). CO2 savings affect the break-even distance of feedstock supply and digestate placement in biogas production. Renewable Energy, 37(1), 45-52. doi:10.1016/j.renene.2011.05.005

Gerin, P. A., Vliegen, F., & Jossart, J.-M. (2008). Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology, 99(7), 2620-2627. doi:10.1016/j.biortech.2007.04.049

Battini, F., Agostini, A., Boulamanti, A. K., Giuntoli, J., & Amaducci, S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Science of The Total Environment, 481, 196-208. doi:10.1016/j.scitotenv.2014.02.038

Boulamanti, A. K., Donida Maglio, S., Giuntoli, J., & Agostini, A. (2013). Influence of different practices on biogas sustainability. Biomass and Bioenergy, 53, 149-161. doi:10.1016/j.biombioe.2013.02.020

Blengini, G. A., Brizio, E., Cibrario, M., & Genon, G. (2011). LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability. Resources, Conservation and Recycling, 57, 36-47. doi:10.1016/j.resconrec.2011.10.003

González-García, S., Bacenetti, J., Negri, M., Fiala, M., & Arroja, L. (2013). Comparative environmental performance of three different annual energy crops for biogas production in Northern Italy. Journal of Cleaner Production, 43, 71-83. doi:10.1016/j.jclepro.2012.12.017

Lansche, J., & Müller, J. (2012). Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates. Engineering in Life Sciences, 12(3), 313-320. doi:10.1002/elsc.201100061

Lijó, L., González-García, S., Bacenetti, J., Fiala, M., Feijoo, G., Lema, J. M., & Moreira, M. T. (2014). Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renewable Energy, 68, 625-635. doi:10.1016/j.renene.2014.03.005

Lijó, L., González-García, S., Bacenetti, J., Fiala, M., Feijoo, G., & Moreira, M. T. (2014). Assuring the sustainable production of biogas from anaerobic mono-digestion. Journal of Cleaner Production, 72, 23-34. doi:10.1016/j.jclepro.2014.03.022

Whiting, A., & Azapagic, A. (2014). Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy, 70, 181-193. doi:10.1016/j.energy.2014.03.103

Berndes, G. (2002). Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Global Environmental Change, 12(4), 253-271. doi:10.1016/s0959-3780(02)00040-7

Gheewala, S. H., Berndes, G., & Jewitt, G. (2011). The bioenergy and water nexus. Biofuels, Bioproducts and Biorefining, 5(4), 353-360. doi:10.1002/bbb.295

Amaducci, S., Amaducci, M. T., Benati, R., & Venturi, G. (2000). Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Industrial Crops and Products, 11(2-3), 179-186. doi:10.1016/s0926-6690(99)00063-1

Amaducci, S., Monti, A., & Venturi, G. (2004). Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Industrial Crops and Products, 20(1), 111-118. doi:10.1016/j.indcrop.2003.12.016

Mahmood, A., & Honermeier, B. (2012). Chemical composition and methane yield of sorghum cultivars with contrasting row spacing. Field Crops Research, 128, 27-33. doi:10.1016/j.fcr.2011.12.010

Zegada-Lizarazu, W., & Monti, A. (2011). Energy crops in rotation. A review. Biomass and Bioenergy, 35(1), 12-25. doi:10.1016/j.biombioe.2010.08.001

Barbanti, L., Grandi, S., Vecchi, A., & Venturi, G. (2006). Sweet and fibre sorghum (Sorghum bicolor (L.) Moench), energy crops in the frame of environmental protection from excessive nitrogen loads. European Journal of Agronomy, 25(1), 30-39. doi:10.1016/j.eja.2006.03.001

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., … Yu, T.-H. (2008). Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science, 319(5867), 1238-1240. doi:10.1126/science.1151861

Styles, D., Gibbons, J., Williams, A. P., Stichnothe, H., Chadwick, D. R., & Healey, J. R. (2014). Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms. GCB Bioenergy, 7(5), 1034-1049. doi:10.1111/gcbb.12189

PE International AGwww.pe-international.com

Plevin, R. J., Delucchi, M. A., & Creutzig, F. (2013). Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation Benefits Misleads Policy Makers. Journal of Industrial Ecology, 18(1), 73-83. doi:10.1111/jiec.12074

Marañón, E., Salter, A. M., Castrillón, L., Heaven, S., & Fernández-Nava, Y. (2011). Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Management, 31(8), 1745-1751. doi:10.1016/j.wasman.2011.03.015

Chantigny, M. H., Angers, D. A., Rochette, P., Bélanger, G., Massé, D., & Côté, D. (2007). Gaseous Nitrogen Emissions and Forage Nitrogen Uptake on Soils Fertilized with Raw and Treated Swine Manure. Journal of Environment Quality, 36(6), 1864. doi:10.2134/jeq2007.0083

Loria, E. R., & Sawyer, J. E. (2005). Extractable Soil Phosphorus and Inorganic Nitrogen following Application of Raw and Anaerobically Digested Swine Manure. Agronomy Journal, 97(3), 879. doi:10.2134/agronj2004.0249

Möller, K., Stinner, W., Deuker, A., & Leithold, G. (2008). Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutrient Cycling in Agroecosystems, 82(3), 209-232. doi:10.1007/s10705-008-9196-9

Koehler, B., Diepolder, M., Ostertag, J., Thurner, S., & Spiekers, H. (2013). Dry matter losses of grass, lucerne and maize silages in bunker silos. Agricultural and Food Science, 22(1), 145-150. doi:10.23986/afsci.6715

Herrmann, C., Heiermann, M., & Idler, C. (2011). Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technology, 102(8), 5153-5161. doi:10.1016/j.biortech.2011.01.012

Schittenhelm, S. (2010). Effect of Drought Stress on Yield and Quality of Maize/Sunflower and Maize/Sorghum Intercrops for Biogas Production. Journal of Agronomy and Crop Science. doi:10.1111/j.1439-037x.2010.00418.x

Gas Engines for CHP Units and Gensetshttp://www.truck.man.eu/man/media/content_medien/doc/global_engines/power/BR_Power_Gas_EN.pdf?_ga=1.109727301.1989443271.1432903866

Walla, C., & Schneeberger, W. (2008). The optimal size for biogas plants. Biomass and Bioenergy, 32(6), 551-557. doi:10.1016/j.biombioe.2007.11.009

Liebetrau, J., Clemens, J., Cuhls, C., Hafermann, C., Friehe, J., Weiland, P., & Daniel-Gromke, J. (2010). Methane emissions from biogas-producing facilities within the agricultural sector. Engineering in Life Sciences, 10(6), 595-599. doi:10.1002/elsc.201000070

Li, Z., Yin, F., Li, H., Wang, X., & Lian, J. (2013). A novel test method for evaluating the methane gas permeability of biogas storage membrane. Renewable Energy, 60, 572-577. doi:10.1016/j.renene.2013.06.010

Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems & Environment, 112(2-3), 153-162. doi:10.1016/j.agee.2005.08.030

Amon, B., Kryvoruchko, V., Moitzi, G., & Amon, T. (2006). Greenhouse gas and ammonia emission abatement by slurry treatment. International Congress Series, 1293, 295-298. doi:10.1016/j.ics.2006.01.069

Muñoz, I., Schmidt, J. H., Brandão, M., & Weidema, B. P. (2014). Rebuttal to ‘Indirect land use change (iLUC) within life cycle assessment (LCA) - scientific robustness and consistency with international standards’. GCB Bioenergy, 7(4), 565-566. doi:10.1111/gcbb.12231

Carrosio, G. (2013). Energy production from biogas in the Italian countryside: Policies and organizational models. Energy Policy, 63, 3-9. doi:10.1016/j.enpol.2013.08.072

Posch, M., Seppälä, J., Hettelingh, J.-P., Johansson, M., Margni, M., & Jolliet, O. (2008). The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. The International Journal of Life Cycle Assessment, 13(6), 477-486. doi:10.1007/s11367-008-0025-9

Seppälä, J., Posch, M., Johansson, M., & Hettelingh, J.-P. (2005). Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator (14 pp). The International Journal of Life Cycle Assessment, 11(6), 403-416. doi:10.1065/lca2005.06.215

The Riskpoll Softwarehttp://www.arirabl.com/software

Greco, S. L., Wilson, A. M., Spengler, J. D., & Levy, J. I. (2007). Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmospheric Environment, 41(5), 1011-1025. doi:10.1016/j.atmosenv.2006.09.025

Abdalla, M., Osborne, B., Lanigan, G., Forristal, D., Williams, M., Smith, P., & Jones, M. B. (2013). Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use and Management, 29(2), 199-209. doi:10.1111/sum.12030

Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133(3-4), 247-266. doi:10.1016/j.agee.2009.04.021

Zhang, S., Li, Q., Lü, Y., Zhang, X., & Liang, W. (2013). Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology and Biochemistry, 62, 147-156. doi:10.1016/j.soilbio.2013.03.023

Derpsch, R., Franzluebbers, A. J., Duiker, S. W., Reicosky, D. C., Koeller, K., Friedrich, T., … Weiss, K. (2014). Why do we need to standardize no-tillage research? Soil and Tillage Research, 137, 16-22. doi:10.1016/j.still.2013.10.002

Franzluebbers, A. J. (2010). Achieving Soil Organic Carbon Sequestration with Conservation Agricultural Systems in the Southeastern United States. Soil Science Society of America Journal, 74(2), 347. doi:10.2136/sssaj2009.0079

Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 118, 66-87. doi:10.1016/j.still.2011.10.015

Mircea, M., Ciancarella, L., Briganti, G., Calori, G., Cappelletti, A., Cionni, I., … Zanini, G. (2014). Assessment of the AMS-MINNI system capabilities to simulate air quality over Italy for the calendar year 2005. Atmospheric Environment, 84, 178-188. doi:10.1016/j.atmosenv.2013.11.006

Tabaglio, V., & Gavazzi, C. (2009). Monoculture Maize (Zea mays L.) Cropped Under Conventional Tillage, No-tillage and N Fertilization: (I) Three Year Yield Performances. Italian Journal of Agronomy, 4(3), 61. doi:10.4081/ija.2009.3.61

Pirlo, G., & Carè, S. (2013). A Simplified Tool for Estimating Carbon Footprint of Dairy Cattle Milk. Italian Journal of Animal Science, 12(4), e81. doi:10.4081/ijas.2013.e81

Sanz-Cobena, A., Sánchez-Martín, L., García-Torres, L., & Vallejo, A. (2012). Gaseous emissions of N2O and NO and NO3− leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agriculture, Ecosystems & Environment, 149, 64-73. doi:10.1016/j.agee.2011.12.016

Stehfest, E., & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207-228. doi:10.1007/s10705-006-9000-7

Perego, A., Basile, A., Bonfante, A., De Mascellis, R., Terribile, F., Brenna, S., & Acutis, M. (2012). Nitrate leaching under maize cropping systems in Po Valley (Italy). Agriculture, Ecosystems & Environment, 147, 57-65. doi:10.1016/j.agee.2011.06.014

Van der Werf, H. M. G., Kanyarushoki, C., & Corson, M. S. (2009). An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. Journal of Environmental Management, 90(11), 3643-3652. doi:10.1016/j.jenvman.2009.07.003

Álvaro-Fuentes, J., Plaza-Bonilla, D., Arrúe, J. L., Lampurlanés, J., & Cantero-Martínez, C. (2012). Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant and Soil, 376(1-2), 31-41. doi:10.1007/s11104-012-1167-x

Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007). Tillage and soil carbon sequestration—What do we really know? Agriculture, Ecosystems & Environment, 118(1-4), 1-5. doi:10.1016/j.agee.2006.05.014

Borin, M., Menini, C., & Sartori, L. (1997). Effects of tillage systems on energy and carbon balance in north-eastern Italy. Soil and Tillage Research, 40(3-4), 209-226. doi:10.1016/s0167-1987(96)01057-4

De Sanctis, G., Roggero, P. P., Seddaiu, G., Orsini, R., Porter, C. H., & Jones, J. W. (2012). Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area. European Journal of Agronomy, 40, 18-27. doi:10.1016/j.eja.2012.02.002

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678-683. doi:10.1038/nclimate2292

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record