- -

Environmentally sustainable biogas? the key role of manure co-digestion with energy crops

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmentally sustainable biogas? the key role of manure co-digestion with energy crops

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agostini, Alessandro es_ES
dc.contributor.author Battini, Ferdinando es_ES
dc.contributor.author Giuntoli, Jacopo es_ES
dc.contributor.author Tabaglio, Vincenzo es_ES
dc.contributor.author Padella, Monica es_ES
dc.contributor.author Baxter, David es_ES
dc.contributor.author Marelli, Luisa es_ES
dc.contributor.author Amaducci, Stefano es_ES
dc.date.accessioned 2016-07-13T11:57:34Z
dc.date.available 2016-07-13T11:57:34Z
dc.date.issued 2015
dc.identifier.issn 1996-1073
dc.identifier.uri http://hdl.handle.net/10251/67546
dc.description.abstract We analyzed the environmental impacts of three biogas systems based on dairy manure, sorghum and maize. The geog. scope of the anal. is the Po valley, in Italy. The anaerobic digestion of manure guarantees high GHG (Green House Gases) savings thanks to the avoided emissions from the traditional storage and management of raw manure as org. fertiliser. GHG emissions for maize and sorghum-based systems, on the other hand, are similar to those of the Italian electricity mix. In crop-based systems, the plants with open-tank storage of digestate emit 50% more GHG than those with gas-tight tanks. In all the environmental impact categories analyzed (acidification, particulate matter emissions, and eutrophication), energy crops based systems have much higher impacts than the Italian electricity mix. Maize-based systems cause higher impacts than sorghum, due to more intensive cultivation. Manure-based pathways have always lower impacts than the energy crops based pathways, however, all biogas systems cause much higher impacts than the current Italian electricity mix. We conclude that manure digestion is the most efficient way to reduce GHG emissions; although there are trade-offs with other local environmental impacts. Biogas prodn. from crops; although not providing environmental benefits per se; may be regarded as an option to facilitate the deployment of manure digestion. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Maize es_ES
dc.subject Manure es_ES
dc.subject Sorghum es_ES
dc.subject Biogas es_ES
dc.subject GHG emissions es_ES
dc.subject Environmental impacts es_ES
dc.title Environmentally sustainable biogas? the key role of manure co-digestion with energy crops es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en8065234
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Agostini, A.; Battini, F.; Giuntoli, J.; Tabaglio, V.; Padella, M.; Baxter, D.; Marelli, L.... (2015). Environmentally sustainable biogas? the key role of manure co-digestion with energy crops. Energies. 8(6):5234-5265. https://doi.org/10.3390/en8065234 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/en8065234 es_ES
dc.description.upvformatpinicio 5234 es_ES
dc.description.upvformatpfin 5265 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 298704 es_ES
dc.description.references Bacenetti, J., Fusi, A., Negri, M., Guidetti, R., & Fiala, M. (2014). Environmental assessment of two different crop systems in terms of biomethane potential production. Science of The Total Environment, 466-467, 1066-1077. doi:10.1016/j.scitotenv.2013.07.109 es_ES
dc.description.references Capponi, S., Fazio, S., & Barbanti, L. (2012). CO2 savings affect the break-even distance of feedstock supply and digestate placement in biogas production. Renewable Energy, 37(1), 45-52. doi:10.1016/j.renene.2011.05.005 es_ES
dc.description.references Gerin, P. A., Vliegen, F., & Jossart, J.-M. (2008). Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresource Technology, 99(7), 2620-2627. doi:10.1016/j.biortech.2007.04.049 es_ES
dc.description.references Battini, F., Agostini, A., Boulamanti, A. K., Giuntoli, J., & Amaducci, S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Science of The Total Environment, 481, 196-208. doi:10.1016/j.scitotenv.2014.02.038 es_ES
dc.description.references Boulamanti, A. K., Donida Maglio, S., Giuntoli, J., & Agostini, A. (2013). Influence of different practices on biogas sustainability. Biomass and Bioenergy, 53, 149-161. doi:10.1016/j.biombioe.2013.02.020 es_ES
dc.description.references Blengini, G. A., Brizio, E., Cibrario, M., & Genon, G. (2011). LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability. Resources, Conservation and Recycling, 57, 36-47. doi:10.1016/j.resconrec.2011.10.003 es_ES
dc.description.references González-García, S., Bacenetti, J., Negri, M., Fiala, M., & Arroja, L. (2013). Comparative environmental performance of three different annual energy crops for biogas production in Northern Italy. Journal of Cleaner Production, 43, 71-83. doi:10.1016/j.jclepro.2012.12.017 es_ES
dc.description.references Lansche, J., & Müller, J. (2012). Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates. Engineering in Life Sciences, 12(3), 313-320. doi:10.1002/elsc.201100061 es_ES
dc.description.references Lijó, L., González-García, S., Bacenetti, J., Fiala, M., Feijoo, G., Lema, J. M., & Moreira, M. T. (2014). Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renewable Energy, 68, 625-635. doi:10.1016/j.renene.2014.03.005 es_ES
dc.description.references Lijó, L., González-García, S., Bacenetti, J., Fiala, M., Feijoo, G., & Moreira, M. T. (2014). Assuring the sustainable production of biogas from anaerobic mono-digestion. Journal of Cleaner Production, 72, 23-34. doi:10.1016/j.jclepro.2014.03.022 es_ES
dc.description.references Whiting, A., & Azapagic, A. (2014). Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy, 70, 181-193. doi:10.1016/j.energy.2014.03.103 es_ES
dc.description.references Berndes, G. (2002). Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Global Environmental Change, 12(4), 253-271. doi:10.1016/s0959-3780(02)00040-7 es_ES
dc.description.references Gheewala, S. H., Berndes, G., & Jewitt, G. (2011). The bioenergy and water nexus. Biofuels, Bioproducts and Biorefining, 5(4), 353-360. doi:10.1002/bbb.295 es_ES
dc.description.references Amaducci, S., Amaducci, M. T., Benati, R., & Venturi, G. (2000). Crop yield and quality parameters of four annual fibre crops (hemp, kenaf, maize and sorghum) in the North of Italy. Industrial Crops and Products, 11(2-3), 179-186. doi:10.1016/s0926-6690(99)00063-1 es_ES
dc.description.references Amaducci, S., Monti, A., & Venturi, G. (2004). Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Industrial Crops and Products, 20(1), 111-118. doi:10.1016/j.indcrop.2003.12.016 es_ES
dc.description.references Mahmood, A., & Honermeier, B. (2012). Chemical composition and methane yield of sorghum cultivars with contrasting row spacing. Field Crops Research, 128, 27-33. doi:10.1016/j.fcr.2011.12.010 es_ES
dc.description.references Zegada-Lizarazu, W., & Monti, A. (2011). Energy crops in rotation. A review. Biomass and Bioenergy, 35(1), 12-25. doi:10.1016/j.biombioe.2010.08.001 es_ES
dc.description.references Barbanti, L., Grandi, S., Vecchi, A., & Venturi, G. (2006). Sweet and fibre sorghum (Sorghum bicolor (L.) Moench), energy crops in the frame of environmental protection from excessive nitrogen loads. European Journal of Agronomy, 25(1), 30-39. doi:10.1016/j.eja.2006.03.001 es_ES
dc.description.references Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., … Yu, T.-H. (2008). Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science, 319(5867), 1238-1240. doi:10.1126/science.1151861 es_ES
dc.description.references Styles, D., Gibbons, J., Williams, A. P., Stichnothe, H., Chadwick, D. R., & Healey, J. R. (2014). Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms. GCB Bioenergy, 7(5), 1034-1049. doi:10.1111/gcbb.12189 es_ES
dc.description.references PE International AGwww.pe-international.com es_ES
dc.description.references Plevin, R. J., Delucchi, M. A., & Creutzig, F. (2013). Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation Benefits Misleads Policy Makers. Journal of Industrial Ecology, 18(1), 73-83. doi:10.1111/jiec.12074 es_ES
dc.description.references Marañón, E., Salter, A. M., Castrillón, L., Heaven, S., & Fernández-Nava, Y. (2011). Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Management, 31(8), 1745-1751. doi:10.1016/j.wasman.2011.03.015 es_ES
dc.description.references Chantigny, M. H., Angers, D. A., Rochette, P., Bélanger, G., Massé, D., & Côté, D. (2007). Gaseous Nitrogen Emissions and Forage Nitrogen Uptake on Soils Fertilized with Raw and Treated Swine Manure. Journal of Environment Quality, 36(6), 1864. doi:10.2134/jeq2007.0083 es_ES
dc.description.references Loria, E. R., & Sawyer, J. E. (2005). Extractable Soil Phosphorus and Inorganic Nitrogen following Application of Raw and Anaerobically Digested Swine Manure. Agronomy Journal, 97(3), 879. doi:10.2134/agronj2004.0249 es_ES
dc.description.references Möller, K., Stinner, W., Deuker, A., & Leithold, G. (2008). Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutrient Cycling in Agroecosystems, 82(3), 209-232. doi:10.1007/s10705-008-9196-9 es_ES
dc.description.references Koehler, B., Diepolder, M., Ostertag, J., Thurner, S., & Spiekers, H. (2013). Dry matter losses of grass, lucerne and maize silages in bunker silos. Agricultural and Food Science, 22(1), 145-150. doi:10.23986/afsci.6715 es_ES
dc.description.references Herrmann, C., Heiermann, M., & Idler, C. (2011). Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technology, 102(8), 5153-5161. doi:10.1016/j.biortech.2011.01.012 es_ES
dc.description.references Schittenhelm, S. (2010). Effect of Drought Stress on Yield and Quality of Maize/Sunflower and Maize/Sorghum Intercrops for Biogas Production. Journal of Agronomy and Crop Science. doi:10.1111/j.1439-037x.2010.00418.x es_ES
dc.description.references Gas Engines for CHP Units and Gensetshttp://www.truck.man.eu/man/media/content_medien/doc/global_engines/power/BR_Power_Gas_EN.pdf?_ga=1.109727301.1989443271.1432903866 es_ES
dc.description.references Walla, C., & Schneeberger, W. (2008). The optimal size for biogas plants. Biomass and Bioenergy, 32(6), 551-557. doi:10.1016/j.biombioe.2007.11.009 es_ES
dc.description.references Liebetrau, J., Clemens, J., Cuhls, C., Hafermann, C., Friehe, J., Weiland, P., & Daniel-Gromke, J. (2010). Methane emissions from biogas-producing facilities within the agricultural sector. Engineering in Life Sciences, 10(6), 595-599. doi:10.1002/elsc.201000070 es_ES
dc.description.references Li, Z., Yin, F., Li, H., Wang, X., & Lian, J. (2013). A novel test method for evaluating the methane gas permeability of biogas storage membrane. Renewable Energy, 60, 572-577. doi:10.1016/j.renene.2013.06.010 es_ES
dc.description.references Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems & Environment, 112(2-3), 153-162. doi:10.1016/j.agee.2005.08.030 es_ES
dc.description.references Amon, B., Kryvoruchko, V., Moitzi, G., & Amon, T. (2006). Greenhouse gas and ammonia emission abatement by slurry treatment. International Congress Series, 1293, 295-298. doi:10.1016/j.ics.2006.01.069 es_ES
dc.description.references Muñoz, I., Schmidt, J. H., Brandão, M., & Weidema, B. P. (2014). Rebuttal to ‘Indirect land use change (iLUC) within life cycle assessment (LCA) - scientific robustness and consistency with international standards’. GCB Bioenergy, 7(4), 565-566. doi:10.1111/gcbb.12231 es_ES
dc.description.references Carrosio, G. (2013). Energy production from biogas in the Italian countryside: Policies and organizational models. Energy Policy, 63, 3-9. doi:10.1016/j.enpol.2013.08.072 es_ES
dc.description.references Posch, M., Seppälä, J., Hettelingh, J.-P., Johansson, M., Margni, M., & Jolliet, O. (2008). The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. The International Journal of Life Cycle Assessment, 13(6), 477-486. doi:10.1007/s11367-008-0025-9 es_ES
dc.description.references Seppälä, J., Posch, M., Johansson, M., & Hettelingh, J.-P. (2005). Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator (14 pp). The International Journal of Life Cycle Assessment, 11(6), 403-416. doi:10.1065/lca2005.06.215 es_ES
dc.description.references The Riskpoll Softwarehttp://www.arirabl.com/software es_ES
dc.description.references Greco, S. L., Wilson, A. M., Spengler, J. D., & Levy, J. I. (2007). Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmospheric Environment, 41(5), 1011-1025. doi:10.1016/j.atmosenv.2006.09.025 es_ES
dc.description.references Abdalla, M., Osborne, B., Lanigan, G., Forristal, D., Williams, M., Smith, P., & Jones, M. B. (2013). Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use and Management, 29(2), 199-209. doi:10.1111/sum.12030 es_ES
dc.description.references Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133(3-4), 247-266. doi:10.1016/j.agee.2009.04.021 es_ES
dc.description.references Zhang, S., Li, Q., Lü, Y., Zhang, X., & Liang, W. (2013). Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology and Biochemistry, 62, 147-156. doi:10.1016/j.soilbio.2013.03.023 es_ES
dc.description.references Derpsch, R., Franzluebbers, A. J., Duiker, S. W., Reicosky, D. C., Koeller, K., Friedrich, T., … Weiss, K. (2014). Why do we need to standardize no-tillage research? Soil and Tillage Research, 137, 16-22. doi:10.1016/j.still.2013.10.002 es_ES
dc.description.references Franzluebbers, A. J. (2010). Achieving Soil Organic Carbon Sequestration with Conservation Agricultural Systems in the Southeastern United States. Soil Science Society of America Journal, 74(2), 347. doi:10.2136/sssaj2009.0079 es_ES
dc.description.references Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., & Roger-Estrade, J. (2012). No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil and Tillage Research, 118, 66-87. doi:10.1016/j.still.2011.10.015 es_ES
dc.description.references Mircea, M., Ciancarella, L., Briganti, G., Calori, G., Cappelletti, A., Cionni, I., … Zanini, G. (2014). Assessment of the AMS-MINNI system capabilities to simulate air quality over Italy for the calendar year 2005. Atmospheric Environment, 84, 178-188. doi:10.1016/j.atmosenv.2013.11.006 es_ES
dc.description.references Tabaglio, V., & Gavazzi, C. (2009). Monoculture Maize (Zea mays L.) Cropped Under Conventional Tillage, No-tillage and N Fertilization: (I) Three Year Yield Performances. Italian Journal of Agronomy, 4(3), 61. doi:10.4081/ija.2009.3.61 es_ES
dc.description.references Pirlo, G., & Carè, S. (2013). A Simplified Tool for Estimating Carbon Footprint of Dairy Cattle Milk. Italian Journal of Animal Science, 12(4), e81. doi:10.4081/ijas.2013.e81 es_ES
dc.description.references Sanz-Cobena, A., Sánchez-Martín, L., García-Torres, L., & Vallejo, A. (2012). Gaseous emissions of N2O and NO and NO3− leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agriculture, Ecosystems & Environment, 149, 64-73. doi:10.1016/j.agee.2011.12.016 es_ES
dc.description.references Stehfest, E., & Bouwman, L. (2006). N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling in Agroecosystems, 74(3), 207-228. doi:10.1007/s10705-006-9000-7 es_ES
dc.description.references Perego, A., Basile, A., Bonfante, A., De Mascellis, R., Terribile, F., Brenna, S., & Acutis, M. (2012). Nitrate leaching under maize cropping systems in Po Valley (Italy). Agriculture, Ecosystems & Environment, 147, 57-65. doi:10.1016/j.agee.2011.06.014 es_ES
dc.description.references Van der Werf, H. M. G., Kanyarushoki, C., & Corson, M. S. (2009). An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment. Journal of Environmental Management, 90(11), 3643-3652. doi:10.1016/j.jenvman.2009.07.003 es_ES
dc.description.references Álvaro-Fuentes, J., Plaza-Bonilla, D., Arrúe, J. L., Lampurlanés, J., & Cantero-Martínez, C. (2012). Soil organic carbon storage in a no-tillage chronosequence under Mediterranean conditions. Plant and Soil, 376(1-2), 31-41. doi:10.1007/s11104-012-1167-x es_ES
dc.description.references Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007). Tillage and soil carbon sequestration—What do we really know? Agriculture, Ecosystems & Environment, 118(1-4), 1-5. doi:10.1016/j.agee.2006.05.014 es_ES
dc.description.references Borin, M., Menini, C., & Sartori, L. (1997). Effects of tillage systems on energy and carbon balance in north-eastern Italy. Soil and Tillage Research, 40(3-4), 209-226. doi:10.1016/s0167-1987(96)01057-4 es_ES
dc.description.references De Sanctis, G., Roggero, P. P., Seddaiu, G., Orsini, R., Porter, C. H., & Jones, J. W. (2012). Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area. European Journal of Agronomy, 40, 18-27. doi:10.1016/j.eja.2012.02.002 es_ES
dc.description.references Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678-683. doi:10.1038/nclimate2292 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem