Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrero, Begoña | es_ES |
dc.contributor.author | Fombuena Borrás, Vicent | es_ES |
dc.contributor.author | Fenollar Gimeno, Octavio Ángel | es_ES |
dc.contributor.author | Boronat Vitoria, Teodomiro | es_ES |
dc.contributor.author | Balart Gimeno, Rafael Antonio | es_ES |
dc.date.accessioned | 2016-07-13T12:20:17Z | |
dc.date.available | 2016-07-13T12:20:17Z | |
dc.date.issued | 2015-08 | |
dc.identifier.issn | 0272-8397 | |
dc.identifier.uri | http://hdl.handle.net/10251/67548 | |
dc.description.abstract | In the present study the valorization of wastes from Posidonia oceanica (PO) has been carried out in order to obtain a fully biobased composite material in combination with a biobased polyethylene obtained from sugar cane as matrix. Morphological analysis by scanning electron microscopy (SEM) of the fractured surfaces from impact tests has revealed a homogenous distribution of particles of PO, as a consequence, good balanced properties have been obtained for composites with PO contents in the 5-40 wt%. Thermal properties of composites have been studied through differential scanning calorimetry (DSC) and thermogravymetric analysis (TGA); the obtained results show an improvement on the thermal degradation. With regard to thermomechanical properties, dynamic mechanical analysis (DMA) results have shown a much enhanced storage modulus (G) as the Posidonia oceanica content increases. Tensile tests have shown a remarkable increase in stiffness with tensile modulus values about 60% higher for composites with 40 wt% with regard to unfilled material. In a similar way, the flexural modulus is more than twice with regard the unloaded polyethylene. Shore D hardness confirms this improvement on mechanical properties and Charpy impact test shows values very similar to sample without PO, so that the intrinsic high impact energy absorption of HDPE is maintained in HDPE-PO composites. The water uptake test determines that the water absorption percent does not exceed 8%, which is relatively low for a high immersion time (5 months), which guarantees a dimensional stability in lifetime for these composites. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Polymer Composites | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mechanical-properties | es_ES |
dc.subject | Composites | es_ES |
dc.subject | Antioxidant | es_ES |
dc.subject | Delile | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pc.23042 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Ferrero, B.; Fombuena Borrás, V.; Fenollar Gimeno, OÁ.; Boronat Vitoria, T.; Balart Gimeno, RA. (2015). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites. 36(8):1378-1385. doi:10.1002/pc.23042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/pc.23042 | es_ES |
dc.description.upvformatpinicio | 1378 | es_ES |
dc.description.upvformatpfin | 1385 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 293581 | es_ES |
dc.identifier.eissn | 1548-0569 | |
dc.description.references | C. Duarte H. Kirkman Methods for the Measurament of Seagrass Abundant and Depth Distribution: Global Seagrass Research Methods Short, 482 2001 | es_ES |
dc.description.references | Bay, D. (1984). A field study of the growth dynamics and productivity of Posidonia oceanica (L.) delile in Calvi Bay, Corsica. Aquatic Botany, 20(1-2), 43-64. doi:10.1016/0304-3770(84)90026-3 | es_ES |
dc.description.references | Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011). Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy, 35(2), 799-807. doi:10.1016/j.biombioe.2010.10.033 | es_ES |
dc.description.references | Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010). Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology, 101(2), 775-780. doi:10.1016/j.biortech.2009.08.079 | es_ES |
dc.description.references | Guezguez, I., Dridi-Dhaouadi, S., & Mhenni, F. (2009). Sorption of Yellow 59 on Posidonia oceanica, a non-conventional biosorbent: Comparison with activated carbons. Industrial Crops and Products, 29(1), 197-204. doi:10.1016/j.indcrop.2008.05.002 | es_ES |
dc.description.references | Bledzki, A. K., Faruk, O., & Huque, M. (2002). Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastics Technology and Engineering, 41(3), 435-451. doi:10.1081/ppt-120004361 | es_ES |
dc.description.references | Dányádi, L., Janecska, T., Szabó, Z., Nagy, G., Móczó, J., & Pukánszky, B. (2007). Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, 67(13), 2838-2846. doi:10.1016/j.compscitech.2007.01.024 | es_ES |
dc.description.references | TabkhPaz, M., Behravesh, A. H., Shahi, P., & Zolfaghari, A. (2013). Procedure effect on the physical and mechanical properties of the extruded wood plastic composites. Polymer Composites, 34(8), 1349-1356. doi:10.1002/pc.22549 | es_ES |
dc.description.references | Yeh, S.-K., & Gupta, R. K. (2010). Nanoclay-reinforced, polypropylene-based wood-plastic composites. Polymer Engineering & Science, 50(10), 2013-2020. doi:10.1002/pen.21729 | es_ES |
dc.description.references | Najafi, S. K., Hamidinia, E., & Tajvidi, M. (2006). Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science, 100(5), 3641-3645. doi:10.1002/app.23159 | es_ES |
dc.description.references | D. Plackett A. Södergård Polylactide-Based Biocomposites in Natural Fibers, Biopolymers, Biocomposites 17 M.M.A.K. Mohanty L.T. Drzal 579 596 | es_ES |
dc.description.references | Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix andposidonia oceanicawaste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567 | es_ES |
dc.description.references | Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2012). Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change. The Journal of Physical Chemistry C, 116(21), 11797-11807. doi:10.1021/jp302466p | es_ES |
dc.description.references | Khiari, R., Marrakchi, Z., Belgacem, M. N., Mauret, E., & Mhenni, F. (2011). New lignocellulosic fibres-reinforced composite materials: A stepforward in the valorisation of the Posidonia oceanica balls. Composites Science and Technology, 71(16), 1867-1872. doi:10.1016/j.compscitech.2011.08.022 | es_ES |
dc.description.references | Gokce, G., & Haznedaroglu, M. Z. (2008). Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. Journal of Ethnopharmacology, 115(1), 122-130. doi:10.1016/j.jep.2007.09.016 | es_ES |
dc.description.references | Pan, B., Ning, N., Liu, J., Bai, L., & Fu, Q. (2009). MECHANICAL PROPERTIES OF SMC WHISKER REINFORCED HIGH DENSITY POLYETHYLENE COMPOSITES. Chinese Journal of Polymer Science, 27(02), 267. doi:10.1142/s0256767909003893 | es_ES |
dc.description.references | Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2 | es_ES |
dc.description.references | Sue, H.-J., Wang, S., & Jane, J.-L. (1997). Morphology and mechanical behaviour of engineering soy plastics. Polymer, 38(20), 5035-5040. doi:10.1016/s0032-3861(97)00048-7 | es_ES |
dc.description.references | Wang, S., Sue, H.-J., & Jane, J. (1996). Effects of Polyhydric Alcohols on the Mechanical Properties of Soy Protein Plastics. Journal of Macromolecular Science, Part A, 33(5), 557-569. doi:10.1080/10601329608010878 | es_ES |
dc.description.references | He, Z., Wang, Y., Bai, H., & Song, B. (2008). TOUGHENING AND STIFFENING EFFECTS OF T-ZnOw WHISKERS ON POLYSTYRENE. Chinese Journal of Polymer Science, 26(03), 285. doi:10.1142/s0256767908002935 | es_ES |
dc.description.references | Tjong, S. ., & Meng, Y. . (1998). Performance of potassium titanate whisker reinforced polyamide-6 composites. Polymer, 39(22), 5461-5466. doi:10.1016/s0032-3861(97)10294-4 | es_ES |
dc.description.references | A. Klyosov Natural and Woodfiber Composites in the Real World, in Progress in Woodfibre-Plastic Composites Conference Proceedings, 2004 | es_ES |
dc.description.references | Ab Ghani, M. H., & Ahmad, S. (2011). The Comparison of Water Absorption Analysis between Counterrotating and Corotating Twin-Screw Extruders with Different Antioxidants Content in Wood Plastic Composites. Advances in Materials Science and Engineering, 2011, 1-4. doi:10.1155/2011/406284 | es_ES |