- -

Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferrero, Begoña es_ES
dc.contributor.author Fombuena Borrás, Vicent es_ES
dc.contributor.author Fenollar Gimeno, Octavio Ángel es_ES
dc.contributor.author Boronat Vitoria, Teodomiro es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.date.accessioned 2016-07-13T12:20:17Z
dc.date.available 2016-07-13T12:20:17Z
dc.date.issued 2015-08
dc.identifier.issn 0272-8397
dc.identifier.uri http://hdl.handle.net/10251/67548
dc.description.abstract In the present study the valorization of wastes from Posidonia oceanica (PO) has been carried out in order to obtain a fully biobased composite material in combination with a biobased polyethylene obtained from sugar cane as matrix. Morphological analysis by scanning electron microscopy (SEM) of the fractured surfaces from impact tests has revealed a homogenous distribution of particles of PO, as a consequence, good balanced properties have been obtained for composites with PO contents in the 5-40 wt%. Thermal properties of composites have been studied through differential scanning calorimetry (DSC) and thermogravymetric analysis (TGA); the obtained results show an improvement on the thermal degradation. With regard to thermomechanical properties, dynamic mechanical analysis (DMA) results have shown a much enhanced storage modulus (G) as the Posidonia oceanica content increases. Tensile tests have shown a remarkable increase in stiffness with tensile modulus values about 60% higher for composites with 40 wt% with regard to unfilled material. In a similar way, the flexural modulus is more than twice with regard the unloaded polyethylene. Shore D hardness confirms this improvement on mechanical properties and Charpy impact test shows values very similar to sample without PO, so that the intrinsic high impact energy absorption of HDPE is maintained in HDPE-PO composites. The water uptake test determines that the water absorption percent does not exceed 8%, which is relatively low for a high immersion time (5 months), which guarantees a dimensional stability in lifetime for these composites. es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Polymer Composites es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mechanical-properties es_ES
dc.subject Composites es_ES
dc.subject Antioxidant es_ES
dc.subject Delile es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pc.23042
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Ferrero, B.; Fombuena Borrás, V.; Fenollar Gimeno, OÁ.; Boronat Vitoria, T.; Balart Gimeno, RA. (2015). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites. 36(8):1378-1385. doi:10.1002/pc.23042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/pc.23042 es_ES
dc.description.upvformatpinicio 1378 es_ES
dc.description.upvformatpfin 1385 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 293581 es_ES
dc.identifier.eissn 1548-0569
dc.description.references C. Duarte H. Kirkman Methods for the Measurament of Seagrass Abundant and Depth Distribution: Global Seagrass Research Methods Short, 482 2001 es_ES
dc.description.references Bay, D. (1984). A field study of the growth dynamics and productivity of Posidonia oceanica (L.) delile in Calvi Bay, Corsica. Aquatic Botany, 20(1-2), 43-64. doi:10.1016/0304-3770(84)90026-3 es_ES
dc.description.references Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011). Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy, 35(2), 799-807. doi:10.1016/j.biombioe.2010.10.033 es_ES
dc.description.references Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010). Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology, 101(2), 775-780. doi:10.1016/j.biortech.2009.08.079 es_ES
dc.description.references Guezguez, I., Dridi-Dhaouadi, S., & Mhenni, F. (2009). Sorption of Yellow 59 on Posidonia oceanica, a non-conventional biosorbent: Comparison with activated carbons. Industrial Crops and Products, 29(1), 197-204. doi:10.1016/j.indcrop.2008.05.002 es_ES
dc.description.references Bledzki, A. K., Faruk, O., & Huque, M. (2002). Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastics Technology and Engineering, 41(3), 435-451. doi:10.1081/ppt-120004361 es_ES
dc.description.references Dányádi, L., Janecska, T., Szabó, Z., Nagy, G., Móczó, J., & Pukánszky, B. (2007). Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, 67(13), 2838-2846. doi:10.1016/j.compscitech.2007.01.024 es_ES
dc.description.references TabkhPaz, M., Behravesh, A. H., Shahi, P., & Zolfaghari, A. (2013). Procedure effect on the physical and mechanical properties of the extruded wood plastic composites. Polymer Composites, 34(8), 1349-1356. doi:10.1002/pc.22549 es_ES
dc.description.references Yeh, S.-K., & Gupta, R. K. (2010). Nanoclay-reinforced, polypropylene-based wood-plastic composites. Polymer Engineering & Science, 50(10), 2013-2020. doi:10.1002/pen.21729 es_ES
dc.description.references Najafi, S. K., Hamidinia, E., & Tajvidi, M. (2006). Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science, 100(5), 3641-3645. doi:10.1002/app.23159 es_ES
dc.description.references D. Plackett A. Södergård Polylactide-Based Biocomposites in Natural Fibers, Biopolymers, Biocomposites 17 M.M.A.K. Mohanty L.T. Drzal 579 596 es_ES
dc.description.references Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix andposidonia oceanicawaste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567 es_ES
dc.description.references Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2012). Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change. The Journal of Physical Chemistry C, 116(21), 11797-11807. doi:10.1021/jp302466p es_ES
dc.description.references Khiari, R., Marrakchi, Z., Belgacem, M. N., Mauret, E., & Mhenni, F. (2011). New lignocellulosic fibres-reinforced composite materials: A stepforward in the valorisation of the Posidonia oceanica balls. Composites Science and Technology, 71(16), 1867-1872. doi:10.1016/j.compscitech.2011.08.022 es_ES
dc.description.references Gokce, G., & Haznedaroglu, M. Z. (2008). Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. Journal of Ethnopharmacology, 115(1), 122-130. doi:10.1016/j.jep.2007.09.016 es_ES
dc.description.references Pan, B., Ning, N., Liu, J., Bai, L., & Fu, Q. (2009). MECHANICAL PROPERTIES OF SMC WHISKER REINFORCED HIGH DENSITY POLYETHYLENE COMPOSITES. Chinese Journal of Polymer Science, 27(02), 267. doi:10.1142/s0256767909003893 es_ES
dc.description.references Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2 es_ES
dc.description.references Sue, H.-J., Wang, S., & Jane, J.-L. (1997). Morphology and mechanical behaviour of engineering soy plastics. Polymer, 38(20), 5035-5040. doi:10.1016/s0032-3861(97)00048-7 es_ES
dc.description.references Wang, S., Sue, H.-J., & Jane, J. (1996). Effects of Polyhydric Alcohols on the Mechanical Properties of Soy Protein Plastics. Journal of Macromolecular Science, Part A, 33(5), 557-569. doi:10.1080/10601329608010878 es_ES
dc.description.references He, Z., Wang, Y., Bai, H., & Song, B. (2008). TOUGHENING AND STIFFENING EFFECTS OF T-ZnOw WHISKERS ON POLYSTYRENE. Chinese Journal of Polymer Science, 26(03), 285. doi:10.1142/s0256767908002935 es_ES
dc.description.references Tjong, S. ., & Meng, Y. . (1998). Performance of potassium titanate whisker reinforced polyamide-6 composites. Polymer, 39(22), 5461-5466. doi:10.1016/s0032-3861(97)10294-4 es_ES
dc.description.references A. Klyosov Natural and Woodfiber Composites in the Real World, in Progress in Woodfibre-Plastic Composites Conference Proceedings, 2004 es_ES
dc.description.references Ab Ghani, M. H., & Ahmad, S. (2011). The Comparison of Water Absorption Analysis between Counterrotating and Corotating Twin-Screw Extruders with Different Antioxidants Content in Wood Plastic Composites. Advances in Materials Science and Engineering, 2011, 1-4. doi:10.1155/2011/406284 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem