- -

Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed

Mostrar el registro completo del ítem

Ferrero, B.; Fombuena Borrás, V.; Fenollar Gimeno, OÁ.; Boronat Vitoria, T.; Balart Gimeno, RA. (2015). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites. 36(8):1378-1385. doi:10.1002/pc.23042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67548

Ficheros en el ítem

Metadatos del ítem

Título: Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed
Autor: Ferrero, Begoña Fombuena Borrás, Vicent Fenollar Gimeno, Octavio Ángel Boronat Vitoria, Teodomiro Balart Gimeno, Rafael Antonio
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
In the present study the valorization of wastes from Posidonia oceanica (PO) has been carried out in order to obtain a fully biobased composite material in combination with a biobased polyethylene obtained from sugar cane ...[+]
Palabras clave: Mechanical-properties , Composites , Antioxidant , Delile
Derechos de uso: Reserva de todos los derechos
Fuente:
Polymer Composites. (issn: 0272-8397 ) (eissn: 1548-0569 )
DOI: 10.1002/pc.23042
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/pc.23042
Tipo: Artículo

References

C. Duarte H. Kirkman Methods for the Measurament of Seagrass Abundant and Depth Distribution: Global Seagrass Research Methods Short, 482 2001

Bay, D. (1984). A field study of the growth dynamics and productivity of Posidonia oceanica (L.) delile in Calvi Bay, Corsica. Aquatic Botany, 20(1-2), 43-64. doi:10.1016/0304-3770(84)90026-3

Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011). Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy, 35(2), 799-807. doi:10.1016/j.biombioe.2010.10.033 [+]
C. Duarte H. Kirkman Methods for the Measurament of Seagrass Abundant and Depth Distribution: Global Seagrass Research Methods Short, 482 2001

Bay, D. (1984). A field study of the growth dynamics and productivity of Posidonia oceanica (L.) delile in Calvi Bay, Corsica. Aquatic Botany, 20(1-2), 43-64. doi:10.1016/0304-3770(84)90026-3

Cocozza, C., Parente, A., Zaccone, C., Mininni, C., Santamaria, P., & Miano, T. (2011). Chemical, physical and spectroscopic characterization of Posidonia oceanica (L.) Del. residues and their possible recycle. Biomass and Bioenergy, 35(2), 799-807. doi:10.1016/j.biombioe.2010.10.033

Khiari, R., Mhenni, M. F., Belgacem, M. N., & Mauret, E. (2010). Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Bioresource Technology, 101(2), 775-780. doi:10.1016/j.biortech.2009.08.079

Guezguez, I., Dridi-Dhaouadi, S., & Mhenni, F. (2009). Sorption of Yellow 59 on Posidonia oceanica, a non-conventional biosorbent: Comparison with activated carbons. Industrial Crops and Products, 29(1), 197-204. doi:10.1016/j.indcrop.2008.05.002

Bledzki, A. K., Faruk, O., & Huque, M. (2002). Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastics Technology and Engineering, 41(3), 435-451. doi:10.1081/ppt-120004361

Dányádi, L., Janecska, T., Szabó, Z., Nagy, G., Móczó, J., & Pukánszky, B. (2007). Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, 67(13), 2838-2846. doi:10.1016/j.compscitech.2007.01.024

TabkhPaz, M., Behravesh, A. H., Shahi, P., & Zolfaghari, A. (2013). Procedure effect on the physical and mechanical properties of the extruded wood plastic composites. Polymer Composites, 34(8), 1349-1356. doi:10.1002/pc.22549

Yeh, S.-K., & Gupta, R. K. (2010). Nanoclay-reinforced, polypropylene-based wood-plastic composites. Polymer Engineering & Science, 50(10), 2013-2020. doi:10.1002/pen.21729

Najafi, S. K., Hamidinia, E., & Tajvidi, M. (2006). Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science, 100(5), 3641-3645. doi:10.1002/app.23159

D. Plackett A. Södergård Polylactide-Based Biocomposites in Natural Fibers, Biopolymers, Biocomposites 17 M.M.A.K. Mohanty L.T. Drzal 579 596

Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix andposidonia oceanicawaste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567

Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2012). Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change. The Journal of Physical Chemistry C, 116(21), 11797-11807. doi:10.1021/jp302466p

Khiari, R., Marrakchi, Z., Belgacem, M. N., Mauret, E., & Mhenni, F. (2011). New lignocellulosic fibres-reinforced composite materials: A stepforward in the valorisation of the Posidonia oceanica balls. Composites Science and Technology, 71(16), 1867-1872. doi:10.1016/j.compscitech.2011.08.022

Gokce, G., & Haznedaroglu, M. Z. (2008). Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. Journal of Ethnopharmacology, 115(1), 122-130. doi:10.1016/j.jep.2007.09.016

Pan, B., Ning, N., Liu, J., Bai, L., & Fu, Q. (2009). MECHANICAL PROPERTIES OF SMC WHISKER REINFORCED HIGH DENSITY POLYETHYLENE COMPOSITES. Chinese Journal of Polymer Science, 27(02), 267. doi:10.1142/s0256767909003893

Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2

Sue, H.-J., Wang, S., & Jane, J.-L. (1997). Morphology and mechanical behaviour of engineering soy plastics. Polymer, 38(20), 5035-5040. doi:10.1016/s0032-3861(97)00048-7

Wang, S., Sue, H.-J., & Jane, J. (1996). Effects of Polyhydric Alcohols on the Mechanical Properties of Soy Protein Plastics. Journal of Macromolecular Science, Part A, 33(5), 557-569. doi:10.1080/10601329608010878

He, Z., Wang, Y., Bai, H., & Song, B. (2008). TOUGHENING AND STIFFENING EFFECTS OF T-ZnOw WHISKERS ON POLYSTYRENE. Chinese Journal of Polymer Science, 26(03), 285. doi:10.1142/s0256767908002935

Tjong, S. ., & Meng, Y. . (1998). Performance of potassium titanate whisker reinforced polyamide-6 composites. Polymer, 39(22), 5461-5466. doi:10.1016/s0032-3861(97)10294-4

A. Klyosov Natural and Woodfiber Composites in the Real World, in Progress in Woodfibre-Plastic Composites Conference Proceedings, 2004

Ab Ghani, M. H., & Ahmad, S. (2011). The Comparison of Water Absorption Analysis between Counterrotating and Corotating Twin-Screw Extruders with Different Antioxidants Content in Wood Plastic Composites. Advances in Materials Science and Engineering, 2011, 1-4. doi:10.1155/2011/406284

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem