- -

Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique

Mostrar el registro completo del ítem

Samper Madrigal, MD.; Petrucci, R.; Sánchez Nacher, L.; Balart Gimeno, RA.; Kenny, JM. (2015). Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique. Polymer Composites. 36(7):1205-1212. https://doi.org/10.1002/pc.23023

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67593

Ficheros en el ítem

Metadatos del ítem

Título: Effect of silane coupling agents on basalt fiber-epoxidized vegetable oil matrix composite materials analyzed by the single fiber fragmentation technique
Autor: Samper Madrigal, María Dolores Petrucci, R. Sánchez Nacher, Lourdes Balart Gimeno, Rafael Antonio Kenny, J. M.
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
The fiber-matrix interfacial shear strength (IFSS) of biobased epoxy composites reinforced with basalt fiber was investigated by the fragmentation method. Basalt fibers were modified with four different silanes, ...[+]
Palabras clave: Mechanical-properties , Polymer composites , Tensile properties , Epoxy resins , Interface , Strength , Adhesion , Damage
Derechos de uso: Reserva de todos los derechos
Fuente:
Polymer Composites. (issn: 0272-8397 ) (eissn: 1548-0569 )
DOI: 10.1002/pc.23023
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/pc.23023
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-00-12/
Agradecimientos:
Contract grant sponsor: Programme Support Research and Development (Polytechnic University of Valencia); contract grant number: PAID-00-12.
Tipo: Artículo

References

Lopattananon, N., Kettle, A. P., Tripathi, D., Beck, A. J., Duval, E., France, R. M., … Jones, F. R. (1999). Interface molecular engineering of carbon-fiber composites. Composites Part A: Applied Science and Manufacturing, 30(1), 49-57. doi:10.1016/s1359-835x(98)00109-2

Nishikawa, M., Okabe, T., & Takeda, N. (2008). Determination of interface properties from experiments on the fragmentation process in single-fiber composites. Materials Science and Engineering: A, 480(1-2), 549-557. doi:10.1016/j.msea.2007.07.067

Rao, V., Herrera-franco, P., Ozzello, A. D., & Drzal, L. T. (1991). A Direct Comparison of the Fragmentation Test and the Microbond Pull-out Test for Determining the Interfacial Shear Strength. The Journal of Adhesion, 34(1-4), 65-77. doi:10.1080/00218469108026506 [+]
Lopattananon, N., Kettle, A. P., Tripathi, D., Beck, A. J., Duval, E., France, R. M., … Jones, F. R. (1999). Interface molecular engineering of carbon-fiber composites. Composites Part A: Applied Science and Manufacturing, 30(1), 49-57. doi:10.1016/s1359-835x(98)00109-2

Nishikawa, M., Okabe, T., & Takeda, N. (2008). Determination of interface properties from experiments on the fragmentation process in single-fiber composites. Materials Science and Engineering: A, 480(1-2), 549-557. doi:10.1016/j.msea.2007.07.067

Rao, V., Herrera-franco, P., Ozzello, A. D., & Drzal, L. T. (1991). A Direct Comparison of the Fragmentation Test and the Microbond Pull-out Test for Determining the Interfacial Shear Strength. The Journal of Adhesion, 34(1-4), 65-77. doi:10.1080/00218469108026506

Doan, T.-T.-L., Brodowsky, H., & Mäder, E. (2012). Jute fibre/epoxy composites: Surface properties and interfacial adhesion. Composites Science and Technology, 72(10), 1160-1166. doi:10.1016/j.compscitech.2012.03.025

Koyanagi, J., Nakatani, H., & Ogihara, S. (2012). Comparison of glass–epoxy interface strengths examined by cruciform specimen and single-fiber pull-out tests under combined stress state. Composites Part A: Applied Science and Manufacturing, 43(11), 1819-1827. doi:10.1016/j.compositesa.2012.06.018

Johnson, A. C., Hayes, S. A., & Jones, F. R. (2012). The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test. Composites Part A: Applied Science and Manufacturing, 43(1), 65-72. doi:10.1016/j.compositesa.2011.09.005

Pupurs, A., Goutianos, S., Brondsted, P., & Varna, J. (2013). Interface debond crack growth in tension–tension cyclic loading of single fiber polymer composites. Composites Part A: Applied Science and Manufacturing, 44, 86-94. doi:10.1016/j.compositesa.2012.08.019

TRIPATHI, D., & JONES, F. R. (1998). Journal of Materials Science, 33(1), 1-16. doi:10.1023/a:1004351606897

Awal, A., Cescutti, G., Ghosh, S. B., & Müssig, J. (2011). Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Composites Part A: Applied Science and Manufacturing, 42(1), 50-56. doi:10.1016/j.compositesa.2010.10.007

Kelly, A., & Tyson, W. R. (1965). Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. Journal of the Mechanics and Physics of Solids, 13(6), 329-350. doi:10.1016/0022-5096(65)90035-9

Altuna, F. I., Espósito, L. H., Ruseckaite, R. A., & Stefani, P. M. (2010). Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. Journal of Applied Polymer Science, 120(2), 789-798. doi:10.1002/app.33097

Harry-O’kuru, R. E., Mohamed, A., Gordon, S. H., & Xu, J. (2012). Syntheses of Novel Protein Products (Milkglyde, Saliglyde, and Soyglyde) from Vegetable Epoxy Oils and Gliadin. Journal of Agricultural and Food Chemistry, 60(7), 1688-1694. doi:10.1021/jf204701t

Pan, X., Sengupta, P., & Webster, D. C. (2011). High Biobased Content Epoxy–Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids. Biomacromolecules, 12(6), 2416-2428. doi:10.1021/bm200549c

Stemmelen, M., Pessel, F., Lapinte, V., Caillol, S., Habas, J.-P., & Robin, J.-J. (2011). A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. Journal of Polymer Science Part A: Polymer Chemistry, 49(11), 2434-2444. doi:10.1002/pola.24674

Kim, H. (2012). Thermal characteristics of basalt fiber reinforced epoxy-benzoxazine composites. Fibers and Polymers, 13(6), 762-768. doi:10.1007/s12221-012-0762-z

Wang, H., Wang, G., Zhang, L., Jiang, Z., Guan, S., & Zhang, S. (2012). Influence of the addition of lubricant on the properties of poly(ether ether ketone)/basalt fiber composites. High Performance Polymers, 24(6), 503-506. doi:10.1177/0954008312443845

Tehrani Dehkordi, M., Nosraty, H., Shokrieh, M. M., Minak, G., & Ghelli, D. (2013). The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites. Materials & Design, 43, 283-290. doi:10.1016/j.matdes.2012.07.005

Guillebaud-Bonnafous, C., Vasconcellos, D., Touchard, F., & Chocinski-Arnault, L. (2012). Experimental and numerical investigation of the interface between epoxy matrix and hemp yarn. Composites Part A: Applied Science and Manufacturing, 43(11), 2046-2058. doi:10.1016/j.compositesa.2012.07.015

Pickering, K. L., Sawpan, M. A., Jayaraman, J., & Fernyhough, A. (2011). Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Composites Part A: Applied Science and Manufacturing, 42(9), 1148-1156. doi:10.1016/j.compositesa.2011.04.020

Charlet, K., Jernot, J.-P., Gomina, M., Bizet, L., & Bréard, J. (2010). Mechanical Properties of Flax Fibers and of the Derived Unidirectional Composites. Journal of Composite Materials, 44(24), 2887-2896. doi:10.1177/0021998310369579

Barreto, A. C. H., Esmeraldo, M. A., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2010). Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites, 31(11), 1928-1937. doi:10.1002/pc.20990

Bledzki, A. K., & Jaszkiewicz, A. (2010). Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP. Composites Science and Technology, 70(12), 1687-1696. doi:10.1016/j.compscitech.2010.06.005

Terenzi, A., Kenny, J. M., & Barbosa, S. E. (2006). Natural fiber suspensions in thermoplastic polymers. I. Analysis of fiber damage during processing. Journal of Applied Polymer Science, 103(4), 2501-2506. doi:10.1002/app.24704

Herrera-Franco, P. J., & Drzal, L. T. (1992). Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites, 23(1), 2-27. doi:10.1016/0010-4361(92)90282-y

Park, J.-M., Shin, W.-G., & Yoon, D.-J. (1999). A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques. Composites Science and Technology, 59(3), 355-370. doi:10.1016/s0266-3538(98)00085-2

España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421

Holmes, G. A., Feresenbet, E., & Raghavan, D. (2003). Using self-assembled monolayer technology to probe the mechanical response of the fiber interphase-matrix interphase interface. Composite Interfaces, 10(6), 515-546. doi:10.1163/156855403322667250

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem