- -

Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Seguí Gil, Lucía es_ES
dc.contributor.author Calabuig Jiménez, Laura es_ES
dc.contributor.author Betoret Valls, Noelia es_ES
dc.contributor.author Fito Maupoey, Pedro es_ES
dc.date.accessioned 2016-07-15T10:55:33Z
dc.date.available 2016-07-15T10:55:33Z
dc.date.issued 2015-12
dc.identifier.issn 0950-5423
dc.identifier.uri http://hdl.handle.net/10251/67658
dc.description.abstract [EN] Antioxidant properties of commercial sugarcane-derived products were analysed to study their suitability for being used as functional ingredients. Cane honey, several jaggeries and several brown sugars were selected from the market and analysed in terms of physicochemical characteristics and antioxidant properties, and compared with white refined sugar (twelve products in total). Moisture, water activity, total soluble solids, pH, colour and sugar profile are reported. As for antioxidant properties, total phenols and flavonoid content, as well as antiradical ability (DPPH. and the TEAC-ABTS methods), are given. All sugarcane products contained phenols and flavonoids and exhibited in vitro antioxidant activity, determined by degree of refining. Among the alternatives analysed, jaggeries and cane honey showed the best antioxidant properties. Thermal treatment did not significantly affect the antioxidant capacity of sugarcane products, especially jaggeries. As sugar-rich products are widely consumed worldwide, the use of non-refined sugarcane derivatives in food formulation is encouraged. es_ES
dc.description.sponsorship The authors would like to acknowledge the Universitat Politecnica de Valencia (Project PAID2010-2420) and Generalitat Valenciana Government (GV/2013/047) for financial support. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof International Journal of Food Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antioxidants es_ES
dc.subject Flavonoids es_ES
dc.subject Jaggery es_ES
dc.subject Phenols es_ES
dc.subject Sugarcane es_ES
dc.subject Sugars es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ijfs.12926
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-2010-2420/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2013%2F047/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Seguí Gil, L.; Calabuig Jiménez, L.; Betoret Valls, N.; Fito Maupoey, P. (2015). Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science and Technology. 50(12):2579-2588. https://doi.org/10.1111/ijfs.12926 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1111/ijfs.12926 es_ES
dc.description.upvformatpinicio 2579 es_ES
dc.description.upvformatpfin 2588 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 296491 es_ES
dc.identifier.eissn 1365-2621
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Abbas, S. R., Sabir, S. M., Ahmad, S. D., Boligon, A. A., & Athayde, M. L. (2014). Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chemistry, 147, 10-16. doi:10.1016/j.foodchem.2013.09.113 es_ES
dc.description.references Amer, S., Na, K.-J., El-Abasy, M., Motobu, M., Koyama, Y., Koge, K., & Hirota, Y. (2004). Immunostimulating effects of sugar cane extract on X-ray radiation induced immunosuppression in the chicken. International Immunopharmacology, 4(1), 71-77. doi:10.1016/j.intimp.2003.10.006 es_ES
dc.description.references Bahorun, T., Luximon-Ramma, A., Crozier, A., & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84(12), 1553-1561. doi:10.1002/jsfa.1820 es_ES
dc.description.references Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5 es_ES
dc.description.references Cataldi, T. R. I., Margiotta, G., Iasi, L., Di Chio, B., Xiloyannis, C., & Bufo, S. A. (2000). Determination of Sugar Compounds in Olive Plant Extracts by Anion-Exchange Chromatography with Pulsed Amperometric Detection. Analytical Chemistry, 72(16), 3902-3907. doi:10.1021/ac000266o es_ES
dc.description.references Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. S., & Yong, M. Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172. doi:10.1016/j.foodchem.2008.07.090 es_ES
dc.description.references Dawidowicz, A. L., Wianowska, D., & Olszowy, M. (2012). On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). Food Chemistry, 131(3), 1037-1043. doi:10.1016/j.foodchem.2011.09.067 es_ES
dc.description.references Del Caro, A., Piga, A., Vacca, V., & Agabbio, M. (2004). Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chemistry, 84(1), 99-105. doi:10.1016/s0308-8146(03)00180-8 es_ES
dc.description.references Dittrich, R., El-massry, F., Kunz, K., Rinaldi, F., Peich, C. C., Beckmann, M. W., & Pischetsrieder, M. (2003). Maillard Reaction Products Inhibit Oxidation of Human Low-Density Lipoproteins in Vitro. Journal of Agricultural and Food Chemistry, 51(13), 3900-3904. doi:10.1021/jf026172s es_ES
dc.description.references Dowd, L. E. (1959). Spectrophotometric Determination of Quercetin. Analytical Chemistry, 31(7), 1184-1187. doi:10.1021/ac60151a033 es_ES
dc.description.references Maurício Duarte-Almeida, J., Novoa, A. V., Linares, A. F., Lajolo, F. M., & Inés Genovese, M. (2006). Antioxidant Activity of Phenolics Compounds From Sugar Cane (Saccharum officinarum L.) Juice. Plant Foods for Human Nutrition, 61(4), 187-192. doi:10.1007/s11130-006-0032-6 es_ES
dc.description.references Duarte-Almeida, J. M., Negri, G., Salatino, A., de Carvalho, J. E., & Lajolo, F. M. (2007). Antiproliferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum) juice. Phytochemistry, 68(8), 1165-1171. doi:10.1016/j.phytochem.2007.01.015 es_ES
dc.description.references EL-ABASY, M., MOTOBU, M., NA, K.-J., SHIMURA, K., NAKAMURA, K., KOGE, K., … HIROTA, Y. (2003). Protective Effects of Sugar Cane Extracts (SCE) on Eimeria tenella Infection in Chickens. Journal of Veterinary Medical Science, 65(8), 865-871. doi:10.1292/jvms.65.865 es_ES
dc.description.references El-Abasy, M., Motobu, M., Nakamura, K., Koge, K., Onodera, T., Vainio, O., … Hirota, Y. (2004). Preventive and therapeutic effects of sugar cane extract on cyclophosphamide-induced immunosuppression in chickens. International Immunopharmacology, 4(8), 983-990. doi:10.1016/j.intimp.2004.01.019 es_ES
dc.description.references Feng, S., Luo, Z., Zhang, Y., Zhong, Z., & Lu, B. (2014). Phytochemical contents and antioxidant capacities of different parts of two sugarcane (Saccharum officinarum L.) cultivars. Food Chemistry, 151, 452-458. doi:10.1016/j.foodchem.2013.11.057 es_ES
dc.description.references Harish Nayaka, M. A., Sathisha, U. V., Manohar, M. P., Chandrashekar, K. B., & Dharmesh, S. M. (2009). Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chemistry, 115(1), 113-118. doi:10.1016/j.foodchem.2008.11.067 es_ES
dc.description.references Kadam, U. S., Ghosh, S. B., De, S., Suprasanna, P., Devasagayam, T. P. A., & Bapat, V. A. (2008). Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chemistry, 106(3), 1154-1160. doi:10.1016/j.foodchem.2007.07.066 es_ES
dc.description.references KOGE, K., NAGAI, Y., MIZUTANI, T., SUZUKI, M., & ARAKI, S. (2001). Inhibitory Effects of Sugar Cane Extracts on Liver Injuries in Mice. NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 48(4), 231-237. doi:10.3136/nskkk.48.231 es_ES
dc.description.references Kumazawa, S., Hamasaka, T., & Nakayama, T. (2004). Antioxidant activity of propolis of various geographic origins. Food Chemistry, 84(3), 329-339. doi:10.1016/s0308-8146(03)00216-4 es_ES
dc.description.references Lin, J.-Y., & Tang, C.-Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140-147. doi:10.1016/j.foodchem.2006.01.014 es_ES
dc.description.references LO, D.-Y., CHEN, T.-H., CHIEN, M.-S., KOGE, K., HOSONO, A., KAMINOGAWA, S., & LEE, W.-C. (2005). Effects of Sugar Cane Extract on the Modulation of Immunity in Pigs. Journal of Veterinary Medical Science, 67(6), 591-597. doi:10.1292/jvms.67.591 es_ES
dc.description.references Luximon-Ramma, A., Bahorun, T., Soobrattee, M. A., & Aruoma, O. I. (2002). Antioxidant Activities of Phenolic, Proanthocyanidin, and Flavonoid Components in Extracts ofCassia fistula. Journal of Agricultural and Food Chemistry, 50(18), 5042-5047. doi:10.1021/jf0201172 es_ES
dc.description.references Motobu, M., Amer, S., Koyama, Y., Hikosaka, K., Sameshima, T., Yamada, M., … Hirota, Y. (2006). Protective effects of sugar cane extract on endotoxic shock in mice. Phytotherapy Research, 20(5), 359-363. doi:10.1002/ptr.1860 es_ES
dc.description.references Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. doi:10.1021/jf051960d es_ES
dc.description.references Payet, B., Shum Cheong Sing, A., & Smadja, J. (2005). Assessment of Antioxidant Activity of Cane Brown Sugars by ABTS and DPPH Radical Scavenging Assays:  Determination of Their Polyphenolic and Volatile Constituents. Journal of Agricultural and Food Chemistry, 53(26), 10074-10079. doi:10.1021/jf0517703 es_ES
dc.description.references Phillips, K. M., Carlsen, M. H., & Blomhoff, R. (2009). Total Antioxidant Content of Alternatives to Refined Sugar. Journal of the American Dietetic Association, 109(1), 64-71. doi:10.1016/j.jada.2008.10.014 es_ES
dc.description.references Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3 es_ES
dc.description.references Vijaya Kumar Reddy, C., Sreeramulu, D., & Raghunath, M. (2010). Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Research International, 43(1), 285-288. doi:10.1016/j.foodres.2009.10.006 es_ES
dc.description.references Sendra, J. M., Sentandreu, E., & Navarro, J. L. (2006). Reduction kinetics of the free stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) for determination of the antiradical activity of citrus juices. European Food Research and Technology, 223(5), 615-624. doi:10.1007/s00217-005-0243-3 es_ES
dc.description.references Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1 es_ES
dc.description.references Varzakas, T., & Chryssanthopoulos, C. (2012). Nutritional and Health Aspects of Sweeteners. Sweeteners, 329-366. doi:10.1201/b12065-12 es_ES
dc.description.references Wojtczak, M., Antczak, A., & Lisik, K. (2013). Contamination of commercial cane sugars by some organic acids and some inorganic anions. Food Chemistry, 136(1), 193-198. doi:10.1016/j.foodchem.2012.07.036 es_ES
dc.description.references Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609-614. doi:10.1021/jf020782a es_ES
dc.description.references YAMAGUCHI, T., MIZOBUCHI, T., KAJIKAWA, R., KAWASHIMA, H., MIYABE, F., TERAO, J., … MATOBA, T. (2001). Radical-Scavenging Activity of Vegetables and the Effect of Coking on Their Activity. Food Science and Technology Research, 7(3), 250-257. doi:10.3136/fstr.7.250 es_ES
dc.description.references Yamauchi, K., Buwjoom, T., Koge, K., & Ebashi, T. (2006). Histological Intestinal Recovery in Chickens Refed Dietary Sugar Cane Extract. Poultry Science, 85(4), 645-651. doi:10.1093/ps/85.4.645 es_ES
dc.description.references YAO, L. H., JIANG, Y. M., SHI, J., TOM�S-BARBER�N, F. A., DATTA, N., SINGANUSONG, R., & CHEN, S. S. (2004). Flavonoids in Food and Their Health Benefits. Plant Foods for Human Nutrition, 59(3), 113-122. doi:10.1007/s11130-004-0049-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem