- -

New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations

Show full item record

Budzko, D.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2015). New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations. Computational Mathematics and Mathematical Physics / Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 55(12):1947-1959. doi:10.1134/S0965542515120040

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67779

Files in this item

Item Metadata

Title: New family of iterative methods based on the Ermakov-Kalitkin scheme for solving nonlinear systems of equations
Author: Budzko, D.A. Cordero Barbero, Alicia Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
A new one-parameter family of iterative methods for solving nonlinear equations and systems is constructed. It is proved that their order of convergence is three for both equations and systems. An analysis of the dynamical ...[+]
Subjects: Two-step iterative scheme for nonlinear equations , Ermakov-Kalitkin scheme , Convergence of the scheme , Stability
Copyrigths: Cerrado
Source:
Computational Mathematics and Mathematical Physics / Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. (issn: 0965-5425 )
DOI: 10.1134/S0965542515120040
Publisher:
Springer. MAIK Nauka/Interperiodica
Publisher version: http://dx.doi.org/10.1134/S0965542515120040
Thanks:
This work was supported by the European Commission and the Ministry of Science and Technologies of Spain, project no. MTM2011-28636-C02-02.
Type: Artículo

References

M. Petkovic, B. Neta, L. Petkovic, and J. Dunic, Multipoint Methods for Solving Nonlinear Equations (Academic, New York, 2012).

A. Cordero, T. Lotfi, K. Mahdiani, and J. R. Torregrosa, “Two optimal general classes of iterative methods with eighth-order,” Acta Appl. Math. 134 (1), 61–74 (2014).

S. Artidiello, A. Cordero, J. R. Torregrosa, and M. P. Vassileva, “Optimal high-order methods for solving nonlinear equations,” J. Appl. Math. 2014, special issue, Article ID 591638, (2014); http://dx.doi.org/10.1155/2014/591638. [+]
M. Petkovic, B. Neta, L. Petkovic, and J. Dunic, Multipoint Methods for Solving Nonlinear Equations (Academic, New York, 2012).

A. Cordero, T. Lotfi, K. Mahdiani, and J. R. Torregrosa, “Two optimal general classes of iterative methods with eighth-order,” Acta Appl. Math. 134 (1), 61–74 (2014).

S. Artidiello, A. Cordero, J. R. Torregrosa, and M. P. Vassileva, “Optimal high-order methods for solving nonlinear equations,” J. Appl. Math. 2014, special issue, Article ID 591638, (2014); http://dx.doi.org/10.1155/2014/591638.

V. V. Popuzin, M. A. Sumbatyan, and R. A. Tanyushin, “Fast iteration method in the problem of waves interacting with a set of thin screens,” Comput. Math. Math. Phys. 53 (8), 1195–1206 (2013).

V. V. Ermakov and N. N. Kalitkin, “The optimal step and regularization for Newton’s method,” USSR Comput. Math. Math. Phys. 21 (2), 235–242 (1981).

T. Zhanlav and I. V. Puzynin, “The convergence of iterations based on a continuous analogue of Newton’s method,” Comput. Math. Math. Phys. 32 (6), 729–737 (1992).

V. M. Madorskii, Quasi-Newton Processes for Solving Nonlinear Equations (Brest. Gos. Univ., Brest, 2005) [in Russian].

J. F. Traub, Iterative Methods for the Solution of Equations (Englewood Cliffs, Prentice-Hall, 1964).

P. Jarratt, “Some fourth order multipoint iterative methods for solving equations,” Math. Comput. 20 (95), 434–437 (1966).

D. A. Budzko and A. N. Prokopenya, “On the stability of equilibrium positions in the circular restricted fourbody problem,” Lect. Notes Comput. Sci. 6885, 88–100 (2011).

D. A. Budzko and A. N. Prokopenya, “Stability of equilibrium positions in the spatial circular restricted fourbody problem,” Lect. Notes Comput. Sci. 7442, 72–83 (2012).

P.Blanchard “The Mandelbrot set, the Farey tree, and the Fibonacci sequence,” Am. Math. Mon.106, (4), pp. 289–302 (1999).

R. L. Devaney, “The Mandelbrot set, the Farey tree, and the Fibonacci sequence,” Am. Math. Mon. 106 (4), 289–302 (1999).

F. I. Chicharro, A. Cordero, and J. R. Torregrosa, “Drawing dynamical and parameters planes of iterative families and methods,” Sci. World J., Article ID 780153 (2013).

A. Cordero and J. R. Torregrosa, “Variants of Newton’s method using fifth-order quadrature formulas,” Appl. Math. Comput. 190, 686–698 (2007).

J. M. Ortega and W. G. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables (Academic, New York, 1970).

C. Hermite, “Sur la formule d’interpolation de Lagrange,” J. Reine Angew. Math. 84, 70–79 (1878).

D. A. Budzko and A. N. Prokopenya, “Symbolic-numerical analysis of equilibrium solutions in a restricted four-body problem,” Program. Comput. Software 36 (2), 68–74 (2010).

D. A. Budzko and A. N. Prokopenya, “Symbolic-numerical methods for searching for equilibrium states in a restricted four-body problem,” Program. Comput. Software 39 (2), 74–80 (2013).

[-]

This item appears in the following Collection(s)

Show full item record