- -

Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vega Gálvez, Antonio Alex es_ES
dc.contributor.author Zura Bravo, Liliana es_ES
dc.contributor.author Lemus-Mondaca, Roberto es_ES
dc.contributor.author Martínez Monzó, Javier es_ES
dc.contributor.author Quispe Fuentes, Issis es_ES
dc.contributor.author Puente Díaz, Luis Andrés es_ES
dc.contributor.author Di Scala, Karina Cecilia
dc.date.accessioned 2016-07-19T07:32:30Z
dc.date.available 2016-07-19T07:32:30Z
dc.date.issued 2015-04
dc.identifier.issn 0022-1155
dc.identifier.uri http://hdl.handle.net/10251/67787
dc.description.abstract [EN] The effects of air drying temperature on dietary fibre, texture and microstructure of the Cape gooseberry fruits during convective dehydration in the range of 50 90 ºC were investigated. The ratio of insoluble dietary fibre to soluble dietary fibre was higher than 7:1 for all dehydrated samples. At 50 ºC tissue structure damage was evidenced leading to the maximum water holding capacity (47.4±2.8 g retained water/100 g water) and the lowest rehydration ratio (1.15±0.06 g absorbed water/g d.m.). Texture analysis showed effects of drying temperatures on TPA parameters. Changes in microstructure tissue were also observed at the studied drying temperatures. Hot air drying technology leads not only to fruit preservation but also increases and adds value to Cape gooseberry, an asset to develop new functional products es_ES
dc.description.sponsorship The authors gratefully acknowledge financial support for this investigation from the Research Department of Universidad de La Serena, Chile. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Food Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Physalis peruviana es_ES
dc.subject Dietary fibre es_ES
dc.subject Texture profile analysis es_ES
dc.subject Rehydration properties es_ES
dc.subject Microstructure es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13197-013-1235-0
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Vega Gálvez, AA.; Zura Bravo, L.; Lemus-Mondaca, R.; Martínez Monzó, J.; Quispe Fuentes, I.; Puente Díaz, LA.; Di Scala, KC. (2015). Influence of drying temperature on dietary fibre, rehydration properties, texture and microstructure of Cape gooseberry (Physalis peruviana L.). Journal of Food Science and Technology. 52(4):2304-2311. doi:10.1007/s13197-013-1235-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s13197-013-1235-0 es_ES
dc.description.upvformatpinicio 2304 es_ES
dc.description.upvformatpfin 2311 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 284205 es_ES
dc.identifier.eissn 0975-8402
dc.contributor.funder Universidad de La Serena es_ES
dc.description.references Aguilera JM (2005) Why food microstructure? J Food Eng 67:3–1 es_ES
dc.description.references AOAC (1990) Official method of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC, USA es_ES
dc.description.references Betoret E, Betoret N, Vidal D, Fito P (2011) Functional foods development: Trends and technologies. Trends Food Sci Technol 22:498–508 es_ES
dc.description.references Borchani C, Besbes S, Masmoudi M, Blecker C, Paquot M, Attia M (2011) Effect of drying methods on physico-chemical and antioxidant properties of date fibre concentrates. Food Chem 125:1194–1201 es_ES
dc.description.references Borchani C, Besbes S, Masmoudi M, Ali Bouaziz M, Blecker C, Attia H (2012) Influence of Oven-Drying Temperature on Physicochemical and Functional Properties of Date Fibre Concentrates. Food and Bioprocess Technology. Food Bioprocess Technol 5(5):1541–1551. es_ES
dc.description.references Chiarini F, Barbosa G (2007) Anatomycal studies of different fruit types in Argentine species of Solanum Subgen. Leptostumonun (Solanaceae). An Jardín Bot Madrid 64:165–175 es_ES
dc.description.references Chong C, Law C (2010) Drying of Exotic Fruits. In: Jangam SV, Law CL, Mujumdar AS (eds) Vegetables and Fruits. Volume 2, (ISBN - 978-981-08-7985-3, Published in Singapore, pp 1-42. es_ES
dc.description.references Di Scala K, Vega-Gálvez A, Uribe E, Oyanadel R, Miranda M, Vergara J, Quispe I, Lemus-Mondaca R (2011) Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int J Food Sci Technol 46:746–753 es_ES
dc.description.references Doymaz I (2008) Convective drying kinetics of strawberry. Chem Eng Proc 47:914–919 es_ES
dc.description.references Doymaz I, Ismail O (2011) Drying characteristics of sweet cherry. Food Bioprod Proc 89:31–38 es_ES
dc.description.references Garau MC, Simal S, Rossello C, Femenia A (2007) Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem 104:1014–1024 es_ES
dc.description.references Garcia OE, Infante B, Rivera CJ (2010) Comparison of dietary fibre values between two varieties of cawpea (Vigna UnguiculataL Walp) of Venezuela, using chemical and enzymatic gravimetric methods. Rev Chilean Nutri 37:455–460 es_ES
dc.description.references Hassanien MFR (2011) Physalis Peruviana: A rich Source of Bioactive Phytochemicals for functional Foods and Pharmaceutical. Food Rev Int 27(3):259–273 es_ES
dc.description.references Heredia A, Barrera C, Andrés A (2007) Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. J Food Eng 80:111–118. es_ES
dc.description.references Karabulut I, Hayaloglu AA, Yildirim H (2007) Thin-layer drying characteristics of Kurut, a Turkish dried dairy by-product. Int J Food Sci Technol 42:1080–1086 es_ES
dc.description.references Kauffmann SFM, Palzer S (2011) Food structure engineering for nutrition, health and wellness. Proc Food Sci 1:1479–1486 es_ES
dc.description.references Kaymak-Ertekin F (2002) Drying and rehydrating kinetics of green and red peppers. J Food Sci 67(1):168–175 es_ES
dc.description.references Krokida MK, Maroulis ZB (2001) Structural properties of dehydrated products during rehydration. Int J Food Sci Technol 36:529–538 es_ES
dc.description.references Krokida MK, Philippopoulos C (2005) Rehydration of Dehydrated Foods. Drying Technol 23:799–830 es_ES
dc.description.references Lewicki P, Pawlak G (2005) Effect of Drying on Microstructure of Plant Tissue. Drying Technol 21:657–683 es_ES
dc.description.references Li L, Wang Z, Hu X, Wu J, Liao X, Chen F, Zhao G (2010) Drying effects of two air-drying shelters in a pilot test on sultana grapes. J Food Proc Eng 33(1):162–178 es_ES
dc.description.references López J, Uribe E, Vega-Gálvez A, Miranda M, Vergara J, González E, Di Scala K (2009) Effect of Air Temperature on Drying Kinetics, Vitamin C, Antioxidant Activity, Total Phenolic Content, Non-enzymatic Browning and Firmness of Blueberries Variety O´Neil. Food Bioproc Technol 3(5):772–777 es_ES
dc.description.references Martínez R, Torres P, Meneses M, Figueroa J, Pérez-Alvarez J, Viuda-Martos M (2012) Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem 135:1520–1526 es_ES
dc.description.references Miranda M, Vega-Gálvez A, García P, Di Scala K, Shi J, Xue S, Uribe E (2010) Effect of Temperature on Structural Properties of Aloe vera (Aloe barbadensis Miller) Gel and Weibull Distribution for Modelling Drying Process. Food Bioprod Proc 88(2–3):138–144 es_ES
dc.description.references Oliveira EG, Rosa GS, Moraes MA, Pinto LAA (2008) Phycocyanin content of spirulina platensis dried in spouted bed and thin layer. J Food Proc Eng 31(1):34–50 es_ES
dc.description.references Peerajit P, Chiewchan N, Devahastin S (2012) Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chem 132:1891–1898 es_ES
dc.description.references Pinto M, Galvez Ranilla L, Apostolidis E, Lajolo FM, Genovese MI, Shetty K (2009) Evaluation of Antihyperglycemia and Antihypertension Potential of Native Peruvian Fruits Using In Vitro Models. J Med Food 12(2):278–291 es_ES
dc.description.references Puente LA, Pinto-Muñoz CA, Castro ES, Cortés M (2011) Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res Int 44(7):1733–1740 es_ES
dc.description.references Rahman MS, Al-farsi S (2005) Instrumental texture profile analysis (TPA) of date flesh as a function of moisture content. J Food Eng 66:505–511 es_ES
dc.description.references Ramadan MF, Morsel J (2003) Oil Goldenberry (Physalis peruviana L.). J Agric Food Chem 51:969–974 es_ES
dc.description.references Ramulu P, Rao PU (2003) Total, insoluble and soluble dietary fiber contents of Indian fruits. J Food Comp Anal 16:677–685 es_ES
dc.description.references Salazar MR, Jones JW, Chaves B, Cooman A (2008) A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Sci Hort 115:142–148 es_ES
dc.description.references Trinchero GD, Sozzi GO, Cerri AM, Vilella F, Fraschina AA (1999) Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Post Biol Technol 16:139–145 es_ES
dc.description.references Uribe E, Vega-Gálvez A, Di Scala K, Oyanadel R, Saavedra J, Miranda M (2009) Characteristics of Convective Drying of Pepino Fruit (Solanum muricatum Ait.): Application Weibull Distribution. Food Bioprocess Technol 4(8):1349–1356 es_ES
dc.description.references Vega-Gálvez A, Ah-hen K, Chacana M, Martínez-Monzó J, García-Segovia P, Lemus-Mondaca R, Di Scala K (2011) Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chem 132(1):51–59 es_ES
dc.description.references Vega-Gálvez A, Puente-Diaz L, Lemus-Mondaca R, Miranda M, Torres MJ (2012) Mathematical modelling of thin-layer drying of Cape Gooseberry (Physalis peru viana L.). J Food Proc Preserv. doi: 10.1111/jfpp.12024 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem