- -

Regulation of translation initiation under biotic and abiotic stresses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regulation of translation initiation under biotic and abiotic stresses

Mostrar el registro completo del ítem

Echevarria-Zomeno, S.; Yanguez, E.; Fernandez-Bautista, N.; Castro-Sanz, AB.; Ferrando Monleón, AR.; Castellano, MM. (2013). Regulation of translation initiation under biotic and abiotic stresses. International Journal of Molecular Sciences. 14(3):4670-4683. https://doi.org/10.3390/ijms14034670

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/67793

Ficheros en el ítem

Metadatos del ítem

Título: Regulation of translation initiation under biotic and abiotic stresses
Autor: Echevarria-Zomeno, Sira Yanguez, Emilio Fernandez-Bautista, Nuria Castro-Sanz, Ana B. Ferrando Monleón, Alejandro Ramón Castellano, M. Mar
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression ...[+]
Palabras clave: Regulation of translation , EIF4E , eIF2 alpha , Plant abiotic stress , IRES , cIRES , CITES , Cap-dependent enhancers
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Molecular Sciences. (issn: 1422-0067 )
DOI: 10.3390/ijms14034670
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/ijms14034670
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/260468/EU/Functional characterization of plant cellular IRES in response to abiotic stress and their use as biotechnological tools/PLANT CIRES BIOTECH/
Agradecimientos:
This work was supported by the ERC Starting Grant 260468 to M. Mar Castellano.
Tipo: Artículo

References

Dever, T. E., & Green, R. (2012). The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 4(7), a013706-a013706. doi:10.1101/cshperspect.a013706

Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042

Graber, T. E., & Holcik, M. (2007). Cap-independent regulation of gene expression in apoptosis. Molecular BioSystems, 3(12), 825. doi:10.1039/b708867a [+]
Dever, T. E., & Green, R. (2012). The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 4(7), a013706-a013706. doi:10.1101/cshperspect.a013706

Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042

Graber, T. E., & Holcik, M. (2007). Cap-independent regulation of gene expression in apoptosis. Molecular BioSystems, 3(12), 825. doi:10.1039/b708867a

Al-Fageeh, M. B., & Smales, C. M. (2006). Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal, 397(2), 247-259. doi:10.1042/bj20060166

Braunstein, S., Karpisheva, K., Pola, C., Goldberg, J., Hochman, T., Yee, H., … Schneider, R. J. (2007). A Hypoxia-Controlled Cap-Dependent to Cap-Independent Translation Switch in Breast Cancer. Molecular Cell, 28(3), 501-512. doi:10.1016/j.molcel.2007.10.019

Castelli, L. M., Lui, J., Campbell, S. G., Rowe, W., Zeef, L. A. H., Holmes, L. E. A., … Ashe, M. P. (2011). Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Molecular Biology of the Cell, 22(18), 3379-3393. doi:10.1091/mbc.e11-02-0153

Gilbert, W. V., Zhou, K., Butler, T. K., & Doudna, J. A. (2007). Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast. Science, 317(5842), 1224-1227. doi:10.1126/science.1144467

Liu, L., & Simon, M. C. (2004). Regulation of Transcription and Translation by Hypoxia. Cancer Biology & Therapy, 3(6), 492-497. doi:10.4161/cbt.3.6.1010

Sun, J., Conn, C. S., Han, Y., Yeung, V., & Qian, S.-B. (2010). PI3K-mTORC1 Attenuates Stress Response by Inhibiting Cap-independent Hsp70 Translation. Journal of Biological Chemistry, 286(8), 6791-6800. doi:10.1074/jbc.m110.172882

Walsh, D., Mathews, M. B., & Mohr, I. (2012). Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harbor Perspectives in Biology, 5(1), a012351-a012351. doi:10.1101/cshperspect.a012351

Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., & Menand, B. (2009). Post-transcriptional Regulation of Gene Expression in Plants during Abiotic Stress. International Journal of Molecular Sciences, 10(7), 3168-3185. doi:10.3390/ijms10073168

Jackson, R. J., Hellen, C. U. T., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), 113-127. doi:10.1038/nrm2838

Clemens, M. J. (2001). Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. Journal of Cellular and Molecular Medicine, 5(3), 221-239. doi:10.1111/j.1582-4934.2001.tb00157.x

Wek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007

Holcik, M., & Sonenberg, N. (2005). Translational control in stress and apoptosis. Nature Reviews Molecular Cell Biology, 6(4), 318-327. doi:10.1038/nrm1618

Muñoz, A., & Castellano, M. M. (2012). Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes? Comparative and Functional Genomics, 2012, 1-8. doi:10.1155/2012/406357

Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833

Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000). Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Molecular Cell, 6(5), 1099-1108. doi:10.1016/s1097-2765(00)00108-8

Ventoso, I., Kochetov, A., Montaner, D., Dopazo, J., & Santoyo, J. (2012). Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells. PLoS ONE, 7(5), e35915. doi:10.1371/journal.pone.0035915

Sudhakar, A., Ramachandran, A., Ghosh, S., Hasnain, S. E., Kaufman, R. J., & Ramaiah, K. V. A. (2000). Phosphorylation of Serine 51 in Initiation Factor 2α (eIF2α) Promotes Complex Formation between eIF2α(P) and eIF2B and Causes Inhibition in the Guanine Nucleotide Exchange Activity of eIF2B†. Biochemistry, 39(42), 12929-12938. doi:10.1021/bi0008682

García, M. A., Meurs, E. F., & Esteban, M. (2007). The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89(6-7), 799-811. doi:10.1016/j.biochi.2007.03.001

Katze, M. G., He, Y., & Gale, M. (2002). Viruses and interferon: a fight for supremacy. Nature Reviews Immunology, 2(9), 675-687. doi:10.1038/nri888

Mohr, I. (2006). Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Research, 119(1), 89-99. doi:10.1016/j.virusres.2005.10.009

Zhang, Y., Wang, Y., Kanyuka, K., Parry, M. A. J., Powers, S. J., & Halford, N. G. (2008). GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. Journal of Experimental Botany, 59(11), 3131-3141. doi:10.1093/jxb/ern169

Lageix, S., Lanet, E., Pouch-Pélissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & Pélissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134

Bilgin, D. D., Liu, Y., Schiff, M., & Dinesh-Kumar, S. . (2003). P58IPK, a Plant Ortholog of Double-Stranded RNA-Dependent Protein Kinase PKR Inhibitor, Functions in Viral Pathogenesis. Developmental Cell, 4(5), 651-661. doi:10.1016/s1534-5807(03)00125-4

Gallie, D. R., Le, H., Caldwell, C., Tanguay, R. L., Hoang, N. X., & Browning, K. S. (1997). The Phosphorylation State of Translation Initiation Factors Is Regulated Developmentally and following Heat Shock in Wheat. Journal of Biological Chemistry, 272(2), 1046-1053. doi:10.1074/jbc.272.2.1046

Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A., & Sonenberg, N. (1996). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proceedings of the National Academy of Sciences, 93(11), 5578-5583. doi:10.1073/pnas.93.11.5578

Gingras, A.-C., & Sonenberg, N. (1997). Adenovirus Infection Inactivates the Translational Inhibitors 4E-BP1 and 4E-BP2. Virology, 237(1), 182-186. doi:10.1006/viro.1997.8757

Freire, M. A. (2005). Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex. Gene, 345(2), 271-277. doi:10.1016/j.gene.2004.11.030

Freire, M. A., Tourneur, C., Granier, F., Camonis, J., El Amrani, A., Browning, K. S., & Robaglia, C. (2000). Plant Molecular Biology, 44(2), 129-140. doi:10.1023/a:1006494628892

Dreher, T. W., & Miller, W. A. (2006). Translational control in positive strand RNA plant viruses. Virology, 344(1), 185-197. doi:10.1016/j.virol.2005.09.031

Thivierge, K., Nicaise, V., Dufresne, P. J., Cotton, S., Laliberté, J.-F., Le Gall, O., & Fortin, M. G. (2005). Plant Virus RNAs. Coordinated Recruitment of Conserved Host Functions by (+) ssRNA Viruses during Early Infection Events: Figure 1. Plant Physiology, 138(4), 1822-1827. doi:10.1104/pp.105.064105

Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolaï, M., … Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO reports, 8(9), 864-870. doi:10.1038/sj.embor.7401043

Manjunath, S., Williams, A. J., & Bailey-Serres, J. (1999). Oxygen deprivation stimulates Ca2+-mediated phosphorylation of mRNA cap-binding protein eIF4E in maize roots. The Plant Journal, 19(1), 21-30. doi:10.1046/j.1365-313x.1999.00489.x

Rausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.x

Sanan-Mishra, N., Pham, X. H., Sopory, S. K., & Tuteja, N. (2005). Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences, 102(2), 509-514. doi:10.1073/pnas.0406485102

Kim, T.-H., Kim, B.-H., Yahalom, A., Chamovitz, D. A., & von Arnim, A. G. (2004). Translational Regulation via 5′ mRNA Leader Sequences Revealed by Mutational Analysis of the Arabidopsis Translation Initiation Factor Subunit eIF3h. The Plant Cell, 16(12), 3341-3356. doi:10.1105/tpc.104.026880

Schepetilnikov, M., Kobayashi, K., Geldreich, A., Caranta, C., Robaglia, C., Keller, M., & Ryabova, L. A. (2011). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. The EMBO Journal, 30(7), 1343-1356. doi:10.1038/emboj.2011.39

Mayberry, L. K., Allen, M. L., Nitka, K. R., Campbell, L., Murphy, P. A., & Browning, K. S. (2011). Plant Cap-binding Complexes Eukaryotic Initiation Factors eIF4F and eIFISO4F. Journal of Biological Chemistry, 286(49), 42566-42574. doi:10.1074/jbc.m111.280099

Carberry, S. E., Goss, D. J., & Darzynkiewicz, E. (1991). A comparison of the binding of methylated cap analogs to wheat germ protein synthesis initiation factors 4F and (iso) 4F. Biochemistry, 30(6), 1624-1627. doi:10.1021/bi00220a026

Lellis, A. D., Allen, M. L., Aertker, A. W., Tran, J. K., Hillis, D. M., Harbin, C. R., … Browning, K. S. (2010). Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. Plant Molecular Biology, 74(3), 249-263. doi:10.1007/s11103-010-9670-z

Dinkova, T. D., Zepeda, H., Martínez-Salas, E., Martínez, L. M., Nieto-Sotelo, J., & Jiménez, E. S. (2005). Cap-independent translation of maize Hsp101. The Plant Journal, 41(5), 722-731. doi:10.1111/j.1365-313x.2005.02333.x

Hutvagner, G. (2002). A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science, 297(5589), 2056-2060. doi:10.1126/science.1073827

Voinnet, O. (2009). Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell, 136(4), 669-687. doi:10.1016/j.cell.2009.01.046

Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151

Sunkar, R., Li, Y.-F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196-203. doi:10.1016/j.tplants.2012.01.010

Dong, Z., Shi, L., Wang, Y., Chen, L., Cai, Z., Wang, Y., … Li, X. (2013). Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing. International Journal of Molecular Sciences, 14(2), 2717-2738. doi:10.3390/ijms14022717

Srivastava, S., Srivastava, A. K., Suprasanna, P., & D’Souza, S. F. (2012). Identification and profiling of arsenic stress-induced microRNAs inBrassica juncea. Journal of Experimental Botany, 64(1), 303-315. doi:10.1093/jxb/ers333

Dugas, D. V., & Bartel, B. (2008). Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Molecular Biology, 67(4), 403-417. doi:10.1007/s11103-008-9329-1

Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238

Chen, X. (2004). A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science, 303(5666), 2022-2025. doi:10.1126/science.1088060

Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana. Current Biology, 12(17), 1484-1495. doi:10.1016/s0960-9822(02)01017-5

Gu, S., & Kay, M. A. (2010). How do miRNAs mediate translational repression? Silence, 1(1), 11. doi:10.1186/1758-907x-1-11

Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., Crété, P., … Robaglia, C. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. The Plant Cell, 21(6), 1762-1768. doi:10.1105/tpc.108.063412

Olsthoorn, R. C. L. (1999). A conformational switch at the 3’ end of a plant virus RNA regulates viral replication. The EMBO Journal, 18(17), 4856-4864. doi:10.1093/emboj/18.17.4856

Smirnyagina, E. V., Morozov, S. Y., Rodionova, N. P., Miroshnichenko, N. A., Solovyev, A. G., Fedorkin, O. N., & Atabekov, J. G. (1991). Translational efficiency and competitive ability of mRNAs with 5′-untranslated αβ-leader of potato virus X RNA. Biochimie, 73(5), 587-598. doi:10.1016/0300-9084(91)90027-x

Thanaraj, T. A., & Pandit, M. W. (1990). Translation-Initiation Promoting Site on Transcripts of Highly Expressed Genes FromSaccharomyces cerevisiaeand the Role of Hairpin Stems to Position the Site Near the Initiation Codon. Journal of Biomolecular Structure and Dynamics, 7(6), 1279-1289. doi:10.1080/07391102.1990.10508565

Tomashevskaya, O. L., Solovyev, A. G., Karpova, O. V., Fedorkin, O. N., Rodionova, N. P., Morozov, S. Y., & Atabekov, J. G. (1993). Effects of sequence elements in the potato virus X RNA 5’ non-translated  beta-leader on its translation enhancing activity. Journal of General Virology, 74(12), 2717-2724. doi:10.1099/0022-1317-74-12-2717

Belkum, A. van, Abrahams, J. P., Pleij, C. W. A., & Bosch, L. (1985). Five pseudoknots are present at the 204 nucleotides long 3’ noncoding region of tobacco mosak virus RNA. Nucleic Acids Research, 13(21), 7673-7686. doi:10.1093/nar/13.21.7673

Gallie, D. R. (2002). The 5’-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Research, 30(15), 3401-3411. doi:10.1093/nar/gkf457

Wells, D. R., Tanguay, R. L., Le, H., & Gallie, D. R. (1998). HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes & Development, 12(20), 3236-3251. doi:10.1101/gad.12.20.3236

Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., & Laliberte, J.-F. (2000). Complex Formation between Potyvirus VPg and Translation Eukaryotic Initiation Factor 4E Correlates with Virus Infectivity. Journal of Virology, 74(17), 7730-7737. doi:10.1128/jvi.74.17.7730-7737.2000

Wittmann, S., Chatel, H., Fortin, M. G., & Laliberté, J.-F. (1997). Interaction of the Viral Protein Genome Linked of Turnip Mosaic Potyvirus with the Translational Eukaryotic Initiation Factor (iso) 4E ofArabidopsis thalianaUsing the Yeast Two-Hybrid System. Virology, 234(1), 84-92. doi:10.1006/viro.1997.8634

Robaglia, C., & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science, 11(1), 40-45. doi:10.1016/j.tplants.2005.11.004

WANG, A., & KRISHNASWAMY, S. (2012). Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology, 13(7), 795-803. doi:10.1111/j.1364-3703.2012.00791.x

Lellis, A. D., Kasschau, K. D., Whitham, S. A., & Carrington, J. C. (2002). Loss-of-Susceptibility Mutants of Arabidopsis thaliana Reveal an Essential Role for eIF(iso)4E during Potyvirus Infection. Current Biology, 12(12), 1046-1051. doi:10.1016/s0960-9822(02)00898-9

Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S., & Robaglia, C. (2002). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. The Plant Journal, 32(6), 927-934. doi:10.1046/j.1365-313x.2002.01481.x

Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M., & Uyeda, I. (2005). Selective involvement of members of the eukaryotic initiation factor 4E family in the infection ofArabidopsis thalianaby potyviruses. FEBS Letters, 579(5), 1167-1171. doi:10.1016/j.febslet.2004.12.086

Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C., & Caranta, C. (2002). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). The Plant Journal, 32(6), 1067-1075. doi:10.1046/j.1365-313x.2002.01499.x

Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., … LeGall, O. (2003). The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiology, 132(3), 1272-1282. doi:10.1104/pp.102.017855

Ruffel, S., Gallois, J. L., Lesage, M. L., & Caranta, C. (2005). The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Molecular Genetics and Genomics, 274(4), 346-353. doi:10.1007/s00438-005-0003-x

Khan, M. A., Miyoshi, H., Gallie, D. R., & Goss, D. J. (2007). Potyvirus Genome-linked Protein, VPg, Directly Affects Wheat Germin VitroTranslation. Journal of Biological Chemistry, 283(3), 1340-1349. doi:10.1074/jbc.m703356200

Cotton, S., Dufresne, P. J., Thivierge, K., Ide, C., & Fortin, M. G. (2006). The VPgPro protein of Turnip mosaic virus: In vitro inhibition of translation from a ribonuclease activity. Virology, 351(1), 92-100. doi:10.1016/j.virol.2006.03.019

Grzela, R., Strokovska, L., Andrieu, J.-P., Dublet, B., Zagorski, W., & Chroboczek, J. (2006). Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie, 88(7), 887-896. doi:10.1016/j.biochi.2006.02.012

Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010

Zeenko, V., & Gallie, D. R. (2005). Cap-independent Translation of Tobacco Etch Virus Is Conferred by an RNA Pseudoknot in the 5′-Leader. Journal of Biological Chemistry, 280(29), 26813-26824. doi:10.1074/jbc.m503576200

Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353

Wang, S., Browning, K. S., & Miller, W. A. (1997). A viral sequence in the 3′-untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA. The EMBO Journal, 16(13), 4107-4116. doi:10.1093/emboj/16.13.4107

Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12

Wang, Z., Treder, K., & Miller, W. A. (2009). Structure of a Viral Cap-independent Translation Element That Functions via High Affinity Binding to the eIF4E Subunit of eIF4F. Journal of Biological Chemistry, 284(21), 14189-14202. doi:10.1074/jbc.m808841200

Gazo, B. M., Murphy, P., Gatchel, J. R., & Browning, K. S. (2004). A Novel Interaction of Cap-binding Protein Complexes Eukaryotic Initiation Factor (eIF) 4F and eIF(iso)4F with a Region in the 3′-Untranslated Region of Satellite Tobacco Necrosis Virus. Journal of Biological Chemistry, 279(14), 13584-13592. doi:10.1074/jbc.m311361200

Mardanova, E. S., Zamchuk, L. A., Skulachev, M. V., & Ravin, N. V. (2008). The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene, 420(1), 11-16. doi:10.1016/j.gene.2008.04.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem