- -

Regulation of translation initiation under biotic and abiotic stresses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regulation of translation initiation under biotic and abiotic stresses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Echevarria-Zomeno, Sira es_ES
dc.contributor.author Yanguez, Emilio es_ES
dc.contributor.author Fernandez-Bautista, Nuria es_ES
dc.contributor.author Castro-Sanz, Ana B. es_ES
dc.contributor.author Ferrando Monleón, Alejandro Ramón es_ES
dc.contributor.author Castellano, M. Mar es_ES
dc.date.accessioned 2016-07-19T08:38:39Z
dc.date.available 2016-07-19T08:38:39Z
dc.date.issued 2013-03
dc.identifier.issn 1422-0067
dc.identifier.uri http://hdl.handle.net/10251/67793
dc.description.abstract [EN] Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations. es_ES
dc.description.sponsorship This work was supported by the ERC Starting Grant 260468 to M. Mar Castellano.
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Regulation of translation es_ES
dc.subject EIF4E es_ES
dc.subject eIF2 alpha es_ES
dc.subject Plant abiotic stress es_ES
dc.subject IRES es_ES
dc.subject cIRES es_ES
dc.subject CITES es_ES
dc.subject Cap-dependent enhancers es_ES
dc.title Regulation of translation initiation under biotic and abiotic stresses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms14034670
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/260468/EU/Functional characterization of plant cellular IRES in response to abiotic stress and their use as biotechnological tools/PLANT CIRES BIOTECH/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Echevarria-Zomeno, S.; Yanguez, E.; Fernandez-Bautista, N.; Castro-Sanz, AB.; Ferrando Monleón, AR.; Castellano, MM. (2013). Regulation of translation initiation under biotic and abiotic stresses. International Journal of Molecular Sciences. 14(3):4670-4683. https://doi.org/10.3390/ijms14034670 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/ijms14034670 es_ES
dc.description.upvformatpinicio 4670 es_ES
dc.description.upvformatpfin 4683 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 256757 es_ES
dc.identifier.pmid 23443165 en_EN
dc.identifier.pmcid PMC3634475 en_EN
dc.contributor.funder European Research Council
dc.description.references Dever, T. E., & Green, R. (2012). The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 4(7), a013706-a013706. doi:10.1101/cshperspect.a013706 es_ES
dc.description.references Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets. Cell, 136(4), 731-745. doi:10.1016/j.cell.2009.01.042 es_ES
dc.description.references Graber, T. E., & Holcik, M. (2007). Cap-independent regulation of gene expression in apoptosis. Molecular BioSystems, 3(12), 825. doi:10.1039/b708867a es_ES
dc.description.references Al-Fageeh, M. B., & Smales, C. M. (2006). Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal, 397(2), 247-259. doi:10.1042/bj20060166 es_ES
dc.description.references Braunstein, S., Karpisheva, K., Pola, C., Goldberg, J., Hochman, T., Yee, H., … Schneider, R. J. (2007). A Hypoxia-Controlled Cap-Dependent to Cap-Independent Translation Switch in Breast Cancer. Molecular Cell, 28(3), 501-512. doi:10.1016/j.molcel.2007.10.019 es_ES
dc.description.references Castelli, L. M., Lui, J., Campbell, S. G., Rowe, W., Zeef, L. A. H., Holmes, L. E. A., … Ashe, M. P. (2011). Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Molecular Biology of the Cell, 22(18), 3379-3393. doi:10.1091/mbc.e11-02-0153 es_ES
dc.description.references Gilbert, W. V., Zhou, K., Butler, T. K., & Doudna, J. A. (2007). Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast. Science, 317(5842), 1224-1227. doi:10.1126/science.1144467 es_ES
dc.description.references Liu, L., & Simon, M. C. (2004). Regulation of Transcription and Translation by Hypoxia. Cancer Biology & Therapy, 3(6), 492-497. doi:10.4161/cbt.3.6.1010 es_ES
dc.description.references Sun, J., Conn, C. S., Han, Y., Yeung, V., & Qian, S.-B. (2010). PI3K-mTORC1 Attenuates Stress Response by Inhibiting Cap-independent Hsp70 Translation. Journal of Biological Chemistry, 286(8), 6791-6800. doi:10.1074/jbc.m110.172882 es_ES
dc.description.references Walsh, D., Mathews, M. B., & Mohr, I. (2012). Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harbor Perspectives in Biology, 5(1), a012351-a012351. doi:10.1101/cshperspect.a012351 es_ES
dc.description.references Floris, M., Mahgoub, H., Lanet, E., Robaglia, C., & Menand, B. (2009). Post-transcriptional Regulation of Gene Expression in Plants during Abiotic Stress. International Journal of Molecular Sciences, 10(7), 3168-3185. doi:10.3390/ijms10073168 es_ES
dc.description.references Jackson, R. J., Hellen, C. U. T., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), 113-127. doi:10.1038/nrm2838 es_ES
dc.description.references Clemens, M. J. (2001). Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. Journal of Cellular and Molecular Medicine, 5(3), 221-239. doi:10.1111/j.1582-4934.2001.tb00157.x es_ES
dc.description.references Wek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007 es_ES
dc.description.references Holcik, M., & Sonenberg, N. (2005). Translational control in stress and apoptosis. Nature Reviews Molecular Cell Biology, 6(4), 318-327. doi:10.1038/nrm1618 es_ES
dc.description.references Muñoz, A., & Castellano, M. M. (2012). Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes? Comparative and Functional Genomics, 2012, 1-8. doi:10.1155/2012/406357 es_ES
dc.description.references Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833 es_ES
dc.description.references Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000). Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Molecular Cell, 6(5), 1099-1108. doi:10.1016/s1097-2765(00)00108-8 es_ES
dc.description.references Ventoso, I., Kochetov, A., Montaner, D., Dopazo, J., & Santoyo, J. (2012). Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells. PLoS ONE, 7(5), e35915. doi:10.1371/journal.pone.0035915 es_ES
dc.description.references Sudhakar, A., Ramachandran, A., Ghosh, S., Hasnain, S. E., Kaufman, R. J., & Ramaiah, K. V. A. (2000). Phosphorylation of Serine 51 in Initiation Factor 2α (eIF2α) Promotes Complex Formation between eIF2α(P) and eIF2B and Causes Inhibition in the Guanine Nucleotide Exchange Activity of eIF2B†. Biochemistry, 39(42), 12929-12938. doi:10.1021/bi0008682 es_ES
dc.description.references García, M. A., Meurs, E. F., & Esteban, M. (2007). The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89(6-7), 799-811. doi:10.1016/j.biochi.2007.03.001 es_ES
dc.description.references Katze, M. G., He, Y., & Gale, M. (2002). Viruses and interferon: a fight for supremacy. Nature Reviews Immunology, 2(9), 675-687. doi:10.1038/nri888 es_ES
dc.description.references Mohr, I. (2006). Phosphorylation and dephosphorylation events that regulate viral mRNA translation. Virus Research, 119(1), 89-99. doi:10.1016/j.virusres.2005.10.009 es_ES
dc.description.references Zhang, Y., Wang, Y., Kanyuka, K., Parry, M. A. J., Powers, S. J., & Halford, N. G. (2008). GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. Journal of Experimental Botany, 59(11), 3131-3141. doi:10.1093/jxb/ern169 es_ES
dc.description.references Lageix, S., Lanet, E., Pouch-Pélissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & Pélissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134 es_ES
dc.description.references Bilgin, D. D., Liu, Y., Schiff, M., & Dinesh-Kumar, S. . (2003). P58IPK, a Plant Ortholog of Double-Stranded RNA-Dependent Protein Kinase PKR Inhibitor, Functions in Viral Pathogenesis. Developmental Cell, 4(5), 651-661. doi:10.1016/s1534-5807(03)00125-4 es_ES
dc.description.references Gallie, D. R., Le, H., Caldwell, C., Tanguay, R. L., Hoang, N. X., & Browning, K. S. (1997). The Phosphorylation State of Translation Initiation Factors Is Regulated Developmentally and following Heat Shock in Wheat. Journal of Biological Chemistry, 272(2), 1046-1053. doi:10.1074/jbc.272.2.1046 es_ES
dc.description.references Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A., & Sonenberg, N. (1996). Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proceedings of the National Academy of Sciences, 93(11), 5578-5583. doi:10.1073/pnas.93.11.5578 es_ES
dc.description.references Gingras, A.-C., & Sonenberg, N. (1997). Adenovirus Infection Inactivates the Translational Inhibitors 4E-BP1 and 4E-BP2. Virology, 237(1), 182-186. doi:10.1006/viro.1997.8757 es_ES
dc.description.references Freire, M. A. (2005). Translation initiation factor (iso) 4E interacts with BTF3, the β subunit of the nascent polypeptide-associated complex. Gene, 345(2), 271-277. doi:10.1016/j.gene.2004.11.030 es_ES
dc.description.references Freire, M. A., Tourneur, C., Granier, F., Camonis, J., El Amrani, A., Browning, K. S., & Robaglia, C. (2000). Plant Molecular Biology, 44(2), 129-140. doi:10.1023/a:1006494628892 es_ES
dc.description.references Dreher, T. W., & Miller, W. A. (2006). Translational control in positive strand RNA plant viruses. Virology, 344(1), 185-197. doi:10.1016/j.virol.2005.09.031 es_ES
dc.description.references Thivierge, K., Nicaise, V., Dufresne, P. J., Cotton, S., Laliberté, J.-F., Le Gall, O., & Fortin, M. G. (2005). Plant Virus RNAs. Coordinated Recruitment of Conserved Host Functions by (+) ssRNA Viruses during Early Infection Events: Figure 1. Plant Physiology, 138(4), 1822-1827. doi:10.1104/pp.105.064105 es_ES
dc.description.references Deprost, D., Yao, L., Sormani, R., Moreau, M., Leterreux, G., Nicolaï, M., … Meyer, C. (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO reports, 8(9), 864-870. doi:10.1038/sj.embor.7401043 es_ES
dc.description.references Manjunath, S., Williams, A. J., & Bailey-Serres, J. (1999). Oxygen deprivation stimulates Ca2+-mediated phosphorylation of mRNA cap-binding protein eIF4E in maize roots. The Plant Journal, 19(1), 21-30. doi:10.1046/j.1365-313x.1999.00489.x es_ES
dc.description.references Rausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.x es_ES
dc.description.references Sanan-Mishra, N., Pham, X. H., Sopory, S. K., & Tuteja, N. (2005). Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences, 102(2), 509-514. doi:10.1073/pnas.0406485102 es_ES
dc.description.references Kim, T.-H., Kim, B.-H., Yahalom, A., Chamovitz, D. A., & von Arnim, A. G. (2004). Translational Regulation via 5′ mRNA Leader Sequences Revealed by Mutational Analysis of the Arabidopsis Translation Initiation Factor Subunit eIF3h. The Plant Cell, 16(12), 3341-3356. doi:10.1105/tpc.104.026880 es_ES
dc.description.references Schepetilnikov, M., Kobayashi, K., Geldreich, A., Caranta, C., Robaglia, C., Keller, M., & Ryabova, L. A. (2011). Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. The EMBO Journal, 30(7), 1343-1356. doi:10.1038/emboj.2011.39 es_ES
dc.description.references Mayberry, L. K., Allen, M. L., Nitka, K. R., Campbell, L., Murphy, P. A., & Browning, K. S. (2011). Plant Cap-binding Complexes Eukaryotic Initiation Factors eIF4F and eIFISO4F. Journal of Biological Chemistry, 286(49), 42566-42574. doi:10.1074/jbc.m111.280099 es_ES
dc.description.references Carberry, S. E., Goss, D. J., & Darzynkiewicz, E. (1991). A comparison of the binding of methylated cap analogs to wheat germ protein synthesis initiation factors 4F and (iso) 4F. Biochemistry, 30(6), 1624-1627. doi:10.1021/bi00220a026 es_ES
dc.description.references Lellis, A. D., Allen, M. L., Aertker, A. W., Tran, J. K., Hillis, D. M., Harbin, C. R., … Browning, K. S. (2010). Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. Plant Molecular Biology, 74(3), 249-263. doi:10.1007/s11103-010-9670-z es_ES
dc.description.references Dinkova, T. D., Zepeda, H., Martínez-Salas, E., Martínez, L. M., Nieto-Sotelo, J., & Jiménez, E. S. (2005). Cap-independent translation of maize Hsp101. The Plant Journal, 41(5), 722-731. doi:10.1111/j.1365-313x.2005.02333.x es_ES
dc.description.references Hutvagner, G. (2002). A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science, 297(5589), 2056-2060. doi:10.1126/science.1073827 es_ES
dc.description.references Voinnet, O. (2009). Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell, 136(4), 669-687. doi:10.1016/j.cell.2009.01.046 es_ES
dc.description.references Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., & Voinnet, O. (2008). Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science, 320(5880), 1185-1190. doi:10.1126/science.1159151 es_ES
dc.description.references Sunkar, R., Li, Y.-F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196-203. doi:10.1016/j.tplants.2012.01.010 es_ES
dc.description.references Dong, Z., Shi, L., Wang, Y., Chen, L., Cai, Z., Wang, Y., … Li, X. (2013). Identification and Dynamic Regulation of microRNAs Involved in Salt Stress Responses in Functional Soybean Nodules by High-Throughput Sequencing. International Journal of Molecular Sciences, 14(2), 2717-2738. doi:10.3390/ijms14022717 es_ES
dc.description.references Srivastava, S., Srivastava, A. K., Suprasanna, P., & D’Souza, S. F. (2012). Identification and profiling of arsenic stress-induced microRNAs inBrassica juncea. Journal of Experimental Botany, 64(1), 303-315. doi:10.1093/jxb/ers333 es_ES
dc.description.references Dugas, D. V., & Bartel, B. (2008). Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Molecular Biology, 67(4), 403-417. doi:10.1007/s11103-008-9329-1 es_ES
dc.description.references Aukerman, M. J., & Sakai, H. (2003). Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes. The Plant Cell, 15(11), 2730-2741. doi:10.1105/tpc.016238 es_ES
dc.description.references Chen, X. (2004). A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science, 303(5666), 2022-2025. doi:10.1126/science.1088060 es_ES
dc.description.references Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana. Current Biology, 12(17), 1484-1495. doi:10.1016/s0960-9822(02)01017-5 es_ES
dc.description.references Gu, S., & Kay, M. A. (2010). How do miRNAs mediate translational repression? Silence, 1(1), 11. doi:10.1186/1758-907x-1-11 es_ES
dc.description.references Lanet, E., Delannoy, E., Sormani, R., Floris, M., Brodersen, P., Crété, P., … Robaglia, C. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. The Plant Cell, 21(6), 1762-1768. doi:10.1105/tpc.108.063412 es_ES
dc.description.references Olsthoorn, R. C. L. (1999). A conformational switch at the 3’ end of a plant virus RNA regulates viral replication. The EMBO Journal, 18(17), 4856-4864. doi:10.1093/emboj/18.17.4856 es_ES
dc.description.references Smirnyagina, E. V., Morozov, S. Y., Rodionova, N. P., Miroshnichenko, N. A., Solovyev, A. G., Fedorkin, O. N., & Atabekov, J. G. (1991). Translational efficiency and competitive ability of mRNAs with 5′-untranslated αβ-leader of potato virus X RNA. Biochimie, 73(5), 587-598. doi:10.1016/0300-9084(91)90027-x es_ES
dc.description.references Thanaraj, T. A., & Pandit, M. W. (1990). Translation-Initiation Promoting Site on Transcripts of Highly Expressed Genes FromSaccharomyces cerevisiaeand the Role of Hairpin Stems to Position the Site Near the Initiation Codon. Journal of Biomolecular Structure and Dynamics, 7(6), 1279-1289. doi:10.1080/07391102.1990.10508565 es_ES
dc.description.references Tomashevskaya, O. L., Solovyev, A. G., Karpova, O. V., Fedorkin, O. N., Rodionova, N. P., Morozov, S. Y., & Atabekov, J. G. (1993). Effects of sequence elements in the potato virus X RNA 5’ non-translated  beta-leader on its translation enhancing activity. Journal of General Virology, 74(12), 2717-2724. doi:10.1099/0022-1317-74-12-2717 es_ES
dc.description.references Belkum, A. van, Abrahams, J. P., Pleij, C. W. A., & Bosch, L. (1985). Five pseudoknots are present at the 204 nucleotides long 3’ noncoding region of tobacco mosak virus RNA. Nucleic Acids Research, 13(21), 7673-7686. doi:10.1093/nar/13.21.7673 es_ES
dc.description.references Gallie, D. R. (2002). The 5’-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Research, 30(15), 3401-3411. doi:10.1093/nar/gkf457 es_ES
dc.description.references Wells, D. R., Tanguay, R. L., Le, H., & Gallie, D. R. (1998). HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes & Development, 12(20), 3236-3251. doi:10.1101/gad.12.20.3236 es_ES
dc.description.references Leonard, S., Plante, D., Wittmann, S., Daigneault, N., Fortin, M. G., & Laliberte, J.-F. (2000). Complex Formation between Potyvirus VPg and Translation Eukaryotic Initiation Factor 4E Correlates with Virus Infectivity. Journal of Virology, 74(17), 7730-7737. doi:10.1128/jvi.74.17.7730-7737.2000 es_ES
dc.description.references Wittmann, S., Chatel, H., Fortin, M. G., & Laliberté, J.-F. (1997). Interaction of the Viral Protein Genome Linked of Turnip Mosaic Potyvirus with the Translational Eukaryotic Initiation Factor (iso) 4E ofArabidopsis thalianaUsing the Yeast Two-Hybrid System. Virology, 234(1), 84-92. doi:10.1006/viro.1997.8634 es_ES
dc.description.references Robaglia, C., & Caranta, C. (2006). Translation initiation factors: a weak link in plant RNA virus infection. Trends in Plant Science, 11(1), 40-45. doi:10.1016/j.tplants.2005.11.004 es_ES
dc.description.references WANG, A., & KRISHNASWAMY, S. (2012). Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Molecular Plant Pathology, 13(7), 795-803. doi:10.1111/j.1364-3703.2012.00791.x es_ES
dc.description.references Lellis, A. D., Kasschau, K. D., Whitham, S. A., & Carrington, J. C. (2002). Loss-of-Susceptibility Mutants of Arabidopsis thaliana Reveal an Essential Role for eIF(iso)4E during Potyvirus Infection. Current Biology, 12(12), 1046-1051. doi:10.1016/s0960-9822(02)00898-9 es_ES
dc.description.references Duprat, A., Caranta, C., Revers, F., Menand, B., Browning, K. S., & Robaglia, C. (2002). The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. The Plant Journal, 32(6), 927-934. doi:10.1046/j.1365-313x.2002.01481.x es_ES
dc.description.references Sato, M., Nakahara, K., Yoshii, M., Ishikawa, M., & Uyeda, I. (2005). Selective involvement of members of the eukaryotic initiation factor 4E family in the infection ofArabidopsis thalianaby potyviruses. FEBS Letters, 579(5), 1167-1171. doi:10.1016/j.febslet.2004.12.086 es_ES
dc.description.references Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C., & Caranta, C. (2002). A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). The Plant Journal, 32(6), 1067-1075. doi:10.1046/j.1365-313x.2002.01499.x es_ES
dc.description.references Nicaise, V., German-Retana, S., Sanjuán, R., Dubrana, M.-P., Mazier, M., Maisonneuve, B., … LeGall, O. (2003). The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiology, 132(3), 1272-1282. doi:10.1104/pp.102.017855 es_ES
dc.description.references Ruffel, S., Gallois, J. L., Lesage, M. L., & Caranta, C. (2005). The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Molecular Genetics and Genomics, 274(4), 346-353. doi:10.1007/s00438-005-0003-x es_ES
dc.description.references Khan, M. A., Miyoshi, H., Gallie, D. R., & Goss, D. J. (2007). Potyvirus Genome-linked Protein, VPg, Directly Affects Wheat Germin VitroTranslation. Journal of Biological Chemistry, 283(3), 1340-1349. doi:10.1074/jbc.m703356200 es_ES
dc.description.references Cotton, S., Dufresne, P. J., Thivierge, K., Ide, C., & Fortin, M. G. (2006). The VPgPro protein of Turnip mosaic virus: In vitro inhibition of translation from a ribonuclease activity. Virology, 351(1), 92-100. doi:10.1016/j.virol.2006.03.019 es_ES
dc.description.references Grzela, R., Strokovska, L., Andrieu, J.-P., Dublet, B., Zagorski, W., & Chroboczek, J. (2006). Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie, 88(7), 887-896. doi:10.1016/j.biochi.2006.02.012 es_ES
dc.description.references Kneller, E. L. P., Rakotondrafara, A. M., & Miller, W. A. (2006). Cap-independent translation of plant viral RNAs. Virus Research, 119(1), 63-75. doi:10.1016/j.virusres.2005.10.010 es_ES
dc.description.references Zeenko, V., & Gallie, D. R. (2005). Cap-independent Translation of Tobacco Etch Virus Is Conferred by an RNA Pseudoknot in the 5′-Leader. Journal of Biological Chemistry, 280(29), 26813-26824. doi:10.1074/jbc.m503576200 es_ES
dc.description.references Miller, W. A., & White, K. A. (2006). Long-Distance RNA-RNA Interactions in Plant Virus Gene Expression and Replication. Annual Review of Phytopathology, 44(1), 447-467. doi:10.1146/annurev.phyto.44.070505.143353 es_ES
dc.description.references Wang, S., Browning, K. S., & Miller, W. A. (1997). A viral sequence in the 3′-untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA. The EMBO Journal, 16(13), 4107-4116. doi:10.1093/emboj/16.13.4107 es_ES
dc.description.references Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3′ Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12 es_ES
dc.description.references Wang, Z., Treder, K., & Miller, W. A. (2009). Structure of a Viral Cap-independent Translation Element That Functions via High Affinity Binding to the eIF4E Subunit of eIF4F. Journal of Biological Chemistry, 284(21), 14189-14202. doi:10.1074/jbc.m808841200 es_ES
dc.description.references Gazo, B. M., Murphy, P., Gatchel, J. R., & Browning, K. S. (2004). A Novel Interaction of Cap-binding Protein Complexes Eukaryotic Initiation Factor (eIF) 4F and eIF(iso)4F with a Region in the 3′-Untranslated Region of Satellite Tobacco Necrosis Virus. Journal of Biological Chemistry, 279(14), 13584-13592. doi:10.1074/jbc.m311361200 es_ES
dc.description.references Mardanova, E. S., Zamchuk, L. A., Skulachev, M. V., & Ravin, N. V. (2008). The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene, 420(1), 11-16. doi:10.1016/j.gene.2008.04.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem